A193843 Mirror image of the triangle A193842.
1, 4, 1, 13, 7, 1, 40, 34, 10, 1, 121, 142, 64, 13, 1, 364, 547, 334, 103, 16, 1, 1093, 2005, 1549, 643, 151, 19, 1, 3280, 7108, 6652, 3478, 1096, 208, 22, 1, 9841, 24604, 27064, 17086, 6766, 1720, 274, 25, 1, 29524, 83653, 105796, 78322, 37384, 11926
Offset: 0
Examples
First six rows: 1; 4, 1; 13, 7, 1; 40, 34, 10, 1; 121, 142, 64, 13, 1; 364, 547, 334, 103, 16, 1;
Links
- E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.
Crossrefs
Programs
-
Maple
T := proc(n,k) option remember; if k<0 or k>n then 0 elif n=k then 1 elif n=1 and k=0 then 4 else 4*T(n-1,k) + T(n-1,k-1) -3*T(n-2,k) - T(n-2,k-1) fi end; seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Jan 18 2014
-
Mathematica
z = 10; p[n_, x_] := (x + 1)^n; q[n_, x_] := (x + 2)^n p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193842 *) TableForm[Table[h[n], {n, 0, z}]] (* A193843 *) Flatten[Table[h[n], {n, -1, z}]]
-
PARI
for(n=0,20,for(k=0,n,print1(1/k!*sum(i=0,n,(3^(i-k)*prod(j=0,k-1,i-j))),", "))) \\ Derek Orr, Oct 14 2014
Formula
From Peter Bala, Jul 31 2012: (Start)
Matrix product of the shifted Pascal triangle {C(n+1,k+1)}n,k>=0 and the square of the Pascal triangle {2^(n-k)*C(n,k)}n,k>=0. Thus the triangle is the product of two triangular Galton arrays and so is also a Galton array (Neuwirth, Theorem 10).
T(n,k) = Sum_{i = 0..n} C(n+1,i+1)*C(i,k)*2^(i-k).
Riordan array (1/((1 - x)*(1 - 3*x)), x/(1 - 3*x)).
O.g.f.: 1/((1 - x)*(1 - (3 + t)*x)) = 1 + (4 + t)*x + (13 + 7*t + t^2)*x^2 + ....
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
Comments