A193844 Triangular array: the fission of ((x+1)^n) by ((x+1)^n); i.e., the self-fission of Pascal's triangle.
1, 1, 3, 1, 5, 7, 1, 7, 17, 15, 1, 9, 31, 49, 31, 1, 11, 49, 111, 129, 63, 1, 13, 71, 209, 351, 321, 127, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023
Offset: 0
Examples
First six rows: 1 1....3 1....5....7 1....7....17....15 1....9....31....49....31 1....11...49....111...129...63
Links
- Jean-François Chamayou, A Random Difference Equation with Dufresne Variables revisited, arXiv:1410.1708 [math.PR], 2014.
- R. Coquereaux and E. Ragoucy, Currents on Grassmann algebras, J. of Geometry and Physics, 1995, Vol 15, pp 333-352.
- R. Coquereaux and E. Ragoucy, Currents on Grassmann algebras, arXiv:hep-th/9310147, 1993.
- C. Kassel, A Künneth formula for the cyclic cohomology of Z2-graded algebras, Math. Ann. 275 (1986) 683.
Crossrefs
Programs
-
Maple
A193844 := (n,k) -> 2^k*binomial(n+1,k)*hypergeom([1,-k],[-k+n+2],1/2); for n from 0 to 5 do seq(round(evalf(A193844(n,k))),k=0..n) od; # Peter Luschny, Jul 23 2014 # Alternatively p := (n,x) -> add(x^k*(1+2*x)^(n-k), k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
-
Mathematica
z = 10; p[n_, x_] := (x + 1)^n; q[n_, x_] := (x + 1)^n p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193844 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193845 *)
-
Sage
# uses[fission from A193842] p = lambda n,x: (x+1)^n A193844_row = lambda n: fission(p, p, n) for n in range(7): print(A193844_row(n)) # Peter Luschny, Jul 23 2014
Formula
From Peter Bala, Jul 16 2013: (Start)
T(n,k) = sum {i = 0..k} (-1)^i*binomial(n+1,k-i)*2^(k-i).
O.g.f.: 1/( (1 - x*t)*(1 - (2*x + 1)*t) ) = 1 + (1 + 3*x)*t + (1 + 5*x + 7*x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(x+1)*( (2*x+1)^(n+1) - x^(n+1) ). (End)
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 17 2014
T(n,k) = 2^k*binomial(n+1,k)*hyper2F1(1,-k,-k+n+2, 1/2). - Peter Luschny, Jul 23 2014
Comments