A193862 Mirror of the triangle A115068.
1, 2, 2, 3, 6, 4, 4, 12, 16, 8, 5, 20, 40, 40, 16, 6, 30, 80, 120, 96, 32, 7, 42, 140, 280, 336, 224, 64, 8, 56, 224, 560, 896, 896, 512, 128, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 10, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512, 11, 110, 660
Offset: 0
Examples
First six rows: 1 2...2 3...6....4 4...12...16...8 5...20...40...40....16 6...30...80...120...96...32 Production matrix begins 2......2 -1/2...1...2 1/4....0...1...2 -1/8...0...0...1...2 1/16...0...0...0...1...2 -1/32..0...0...0...0...1...2 1/64...0...0...0...0...0...1...2 -1/128.0...0...0...0...0...0...1...2 1/256..0...0...0...0...0...0...0...1...2 - _Philippe Deléham_, Jan 29 2014
Crossrefs
Cf. A115068.
Programs
-
Mathematica
z = 11; p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1; q[n_, x_] := (2 x + 1)^n; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A115068 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193862 *) T[ n_, k_] := Binomial[n, k]/2 2^k; (* Michael Somos, Apr 10 2020 *)
-
PARI
{T(n, k) = binomial(n, k)/2 * 2^k}; /* Michael Somos, Apr 10 2020 */
Formula
T(n, k) = binomial(n, k)/2 * 2^k. - Michael Somos, Apr 10 2020
Comments