cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193867 Odd central polygonal numbers.

Original entry on oeis.org

1, 7, 11, 29, 37, 67, 79, 121, 137, 191, 211, 277, 301, 379, 407, 497, 529, 631, 667, 781, 821, 947, 991, 1129, 1177, 1327, 1379, 1541, 1597, 1771, 1831, 2017, 2081, 2279, 2347, 2557, 2629, 2851, 2927, 3161, 3241, 3487, 3571, 3829, 3917, 4187, 4279
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2011

Keywords

Comments

Even triangular numbers plus 1.
Union of A188135 and A185438 without repetitions (A188135 is a bisection of this sequence. Another bisection is A185438 but without its initial term).

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[0,100]],EvenQ]+1 (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,7,11,29,37},50] (* Harvey P. Dale, Nov 29 2014 *)
  • PARI
    Vec(-x*(x^2+1)*(x^2+6*x+1) / ((1+x)^2*(x-1)^3) + O(x^100)) \\ Colin Barker, Jan 27 2016

Formula

a(n) = A000124(A014601(n-1)).
a(n) = 1 + A014494(n-1).
G.f.: -x*(x^2+1)*(x^2+6*x+1) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 25 2011
From Colin Barker, Jan 27 2016: (Start)
a(n) = (4*n^2+2*(-1)^n*n-4*n-(-1)^n+3)/2.
a(n) = 2*n^2-n+1 for n even.
a(n) = 2*n^2-3*n+2 for n odd. (End)
Sum_{n>=1} 1/a(n) = 2*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(2*cosh(sqrt(7)*Pi/4) - sqrt(2))). - Amiram Eldar, May 11 2025