A193908 Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+2)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=2x*q(n-1,x)+1 with q(0,x)=1.
1, 2, 1, 8, 6, 3, 24, 20, 12, 6, 80, 64, 40, 22, 11, 256, 208, 128, 72, 38, 19, 832, 672, 416, 232, 124, 64, 32, 2688, 2176, 1344, 752, 400, 208, 106, 53, 8704, 7040, 4352, 2432, 1296, 672, 344, 174, 87, 28160, 22784, 14080, 7872, 4192, 2176, 1112, 564
Offset: 0
Examples
First six rows: 1 2....1 8....6....3 24...20...12...6 80...64...40...22...11 256..208..128..72...38...19
Programs
-
Mathematica
z = 12; p[n_, x_] := Sum[Fibonacci[k + 2]*x^(n - k), {k, 0, n}]; q[n_, x_] := 2 x*q[n - 1, x] + 1 ; q[0, x_] := 1; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193908 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193909 *)
Comments