cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193981 Number of ways to arrange 3 nonattacking triangular rooks on an nXnXn triangular grid.

Original entry on oeis.org

0, 0, 0, 2, 23, 127, 468, 1352, 3310, 7190, 14260, 26330, 45885, 76237, 121688, 187712, 281148, 410412, 585720, 819330, 1125795, 1522235, 2028620, 2668072, 3467178, 4456322, 5670028, 7147322, 8932105, 11073545, 13626480, 16651840, 20217080
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Comments

Column 3 of A193986

Examples

			Some solutions for 5X5X5
......0..........0..........0..........0..........0..........0..........0
.....0.0........0.0........0.0........0.0........0.1........0.0........0.1
....0.0.1......1.0.0......0.1.0......0.1.0......0.0.0......0.1.0......1.0.0
...0.1.0.0....0.0.0.1....1.0.0.0....0.0.0.1....1.0.0.0....1.0.0.0....0.0.0.0
..1.0.0.0.0..0.1.0.0.0..0.0.1.0.0..0.0.1.0.0..0.0.1.0.0..0.0.0.0.1..0.0.0.1.0
		

Formula

Empirical: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8)
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -x^4*(2 + 11*x + 17*x^2)/((-1+x)^7*(1+x))
Empirical: a(n) = 13*n/24 - 11*n^2/24 - 23*n^3/48 + 9*n^4/16 - 3*n^5/16 + n^6/48 + 1/4*floor(n/2)
(End)