A283114 Number of nonequivalent ways (mod D_3) to place 3 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.
0, 0, 0, 1, 5, 23, 82, 230, 560, 1208, 2392, 4405, 7673, 12733, 20320, 31326, 46914, 68460, 97698, 136635, 187737, 253813, 338240, 444818, 578038, 742898, 945224, 1191443, 1488955, 1845865, 2271410, 2775640, 3369910, 4066506, 4879200, 5822823, 6913887, 8170095
Offset: 1
Examples
There is a(4) = 1 way to place 3 points on a 4 X 4 X 4 grid, rotations and reflections ignored: . X . . . X . X . .
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
Programs
-
Mathematica
Table[(n^6 - 9 n^5 + 27 n^4 - 20 n^3 - 24 n^2 + 24 n)/288 + Boole[OddQ@ n] (n^2 - 3 n - 5)/32 + Boole[Mod[n, 3] == 1] 2/9, {n, 38}] (* or *) Rest@ CoefficientList[Series[x^4*(1 + 2 x + 8 x^2 + 20 x^3 + 16 x^4 + 10 x^5 + 3 x^6)/((1 - x)^7*(1 + x)^3*(1 + x + x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Mar 01 2017 *) LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,0,0,1,5,23,82,230,560,1208,2392,4405},40] (* Harvey P. Dale, May 07 2022 *)
-
PARI
concat(vector(3), Vec(x^4*(1 + 2*x + 8*x^2 + 20*x^3 + 16*x^4 + 10*x^5 + 3*x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2)) + O(x^30))) \\ Colin Barker, Mar 01 2017
Formula
a(n) = (n^6 - 9*n^5 + 27*n^4 - 20*n^3 - 24*n^2 + 24*n)/288 + IF(MOD(n, 2) = 1, n^2 - 3*n - 5)/32 + IF(MOD(n, 3) = 1, 2)/9.
G.f.: x^4*(1 + 2*x + 8*x^2 + 20*x^3 + 16*x^4 + 10*x^5 + 3*x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2)). - Colin Barker, Mar 01 2017
a(n) = ( 2*n^6 - 18*n^5 + 54*n^4 - 40*n^3 - 39*n^2 + 21*n - 45 - 9*(n^2 - 3*n - 5)*(-1)^n + 128*((n mod 3) mod 2) )/576. - Bruno Berselli, Mar 01 2017
Comments