A194032 Natural interspersion of the squares (1,4,9,16,25,...), a rectangular array, by antidiagonals.
1, 4, 2, 9, 5, 3, 16, 10, 6, 7, 25, 17, 11, 12, 8, 36, 26, 18, 19, 13, 14, 49, 37, 27, 28, 20, 21, 15, 64, 50, 38, 39, 29, 30, 22, 23, 81, 65, 51, 52, 40, 41, 31, 32, 24, 100, 82, 66, 67, 53, 54, 42, 43, 33, 34, 121, 101, 83, 84, 68, 69, 55, 56, 44, 45
Offset: 1
Examples
Northwest corner: 1...4...9...16...25 2...5...10..17...26 3...6...11..18...27 7...12..19..28...39 8...13..20..29...40
Links
- Zhuorui He, Table of n, a(n) for n = 1..11325
Programs
-
Mathematica
z = 30; c[k_] := k^2; c = Table[c[k], {k, 1, z}] (* A000290 *) f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] (* A071797 *) f = Table[f[n], {n, 1, 255}] r[n_] := Flatten[Position[f, n]] t[n_, k_] := r[n][[k]] TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] p = Flatten[Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194032 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194033 *)
Formula
T(n, k) = (k + max(floor(n/2)-1,0))^2 + n - 1. - Zhuorui He, Jul 08 2025
Comments