A194038 Natural interspersion of A034856, a rectangular array, by antidiagonals.
1, 4, 2, 8, 5, 3, 13, 9, 6, 7, 19, 14, 10, 11, 12, 26, 20, 15, 16, 17, 18, 34, 27, 21, 22, 23, 24, 25, 43, 35, 28, 29, 30, 31, 32, 33, 53, 44, 36, 37, 38, 39, 40, 41, 42, 64, 54, 45, 46, 47, 48, 49, 50, 51, 52, 76, 65, 55, 56, 57, 58, 59, 60, 61, 62, 63, 89, 77, 66
Offset: 0
Examples
Northwest corner: 1...4...8...13...19 2...5...9...14...20 3...6...10..15...21 7...11..16..22...29 12..17..23..30...38
Programs
-
Mathematica
z = 30; c[k_] := (k^2 + 3 k - 2)/2; c = Table[c[k], {k, 1, z}] (* A034856 *) f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] f = Table[f[n], {n, 1, 255}] (* essentially A002260 *) r[n_] := Flatten[Position[f, n]] t[n_, k_] := r[n][[k]] TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194038 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194040 *)
Comments