cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A194042 G.f. satisfies: A(x) = ( Sum_{n>=0} q^(n*(n+1)/2) )^8 where q=x*A(x).

Original entry on oeis.org

1, 8, 92, 1248, 18590, 294032, 4848456, 82433472, 1434755717, 25438412696, 457838000316, 8342826818080, 153615385821902, 2853694780131056, 53419650732453288, 1006670308475537216, 19081647909610147674, 363577167520213046504, 6959630216092660689968
Offset: 0

Views

Author

Paul D. Hanna, Aug 12 2011

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 92*x^2 + 1248*x^3 + 18590*x^4 + 294032*x^5 +...
where
(0) A(x)^(1/8) = 1 + x*A(x) + x^3*A(x)^3 + x^6*A(x)^6 + x^10*A(x)^10 + x^15*A(x)^15 + x^21*A(x)^21 +...
(1) A(x)^(1/2) = 1/(1-x*A(x)) + 3*x*A(x)/(1-x^3*A(x)^3) + 5*x^2*A(x)^2/(1-x^5*A(x)^5) + 7*x^3*A(x)^3/(1-x^7*A(x)^7) +...
(2) A(x) = 1/(1-x^2*A(x)^2) + 8*x*A(x)/(1-x^4*A(x)^4) + 27*x^2*A(x)^2/(1-x^6*A(x)^6) + 64*x^3*A(x)^3/(1-x^8*A(x)^8) +...
(3) A(x) = (1+x*A(x))^8*(1-x^2*A(x)^2)^8 * (1+x^2*A(x)^2)^8*(1-x^4*A(x)^4)^8 * (1+x^3*A(x)^3)^8*(1-x^6*A(x)^6)^8 * (1+x^4*A(x)^4)^8*(1-x^8*A(x)^8)^8 *...
(4) log(A(x)) = 8*x*A(x)/(1+x*A(x)) + 8*(x^2*A(x)^2/(1+x^2*A(x)^2))/2  + 8*(x^3*A(x)^3/(1+x^3*A(x)^3))/3 + 8*(x^4*A(x)^4/(1+x^4*A(x)^4))/4 +...
Related expansions begin:
_ A(x)^(1/8) = 1 + x + 8*x^2 + 93*x^3 + 1272*x^4 + 19058*x^5 + 302705*x^6 + 5007234*x^7 + 85341048*x^8 +...+  A194043(n)*x^n +...
_ A(x)^(1/2) = 1 + 4*x + 38*x^2 + 472*x^3 + 6685*x^4 + 102340*x^5 + 1649446*x^6 + 27574712*x^7 + 473750970*x^8 +...+  A194044(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{2*s^(1/8) == QPochhammer[-1, r*s]*QPochhammer[r^2*s^2, r^2*s^2], r*s*Derivative[0, 1][QPochhammer][-1, r*s] / QPochhammer[-1, r*s] + r^2*s^(15/8) * QPochhammer[-1, r*s] * Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] - 2*Log[1 - r^2*s^2]/Log[r^2*s^2] - 2*QPolyGamma[0, 1, r^2*s^2]/Log[r^2*s^2] == 1/8}, {r, 1/20}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 17 2024 *)
  • PARI
    {a(n)=local(A=1+x, T=sum(m=0, sqrtint(2*n+1), x^(m*(m+1)/2))+x*O(x^n)); A=(serreverse(x/T^8)/x); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,sqrt(2*n+1),(x*A+x*O(x^n))^(m*(m+1)/2))^8);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,(2*m+1)*(x*A)^m/(1-(x*A+x*O(x^n))^(2*m+1)))^2);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,(m+1)^3*(x*A)^m/(1-(x*A+x*O(x^n))^(2*m+2))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+(x*A)^m)*(1-(x*A)^(2*m)+x*O(x^n)))^8); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, 8*(x*A)^m/(1+(x*A)^m+x*O(x^n))/m))); polcoeff(A, n)}

Formula

Let q = x*A(x), then g.f. A(x) satisfies:
(1) A(x) = ( Sum_{n>=0} (2*n+1) * q^n/(1 - q^(2*n+1)) )^2,
(2) A(x) = Sum_{n>=0} (n+1)^3 * q^n/(1 - q^(2*n+2)),
(3) A(x) = Product_{n>=1} (1 + q^n)^8*(1 - q^(2*n))^8,
(4) A(x) = exp( Sum_{n>=1} 8*(q^n/(1 + q^n))/n ),
(5) A(x/F(x)^8) = F(x)^8 where F(x) = Sum_{n>=0} x^(n*(n+1)/2),
due to q-series identities.
a(n) ~ c * d^n / n^(3/2), where d = 20.757466132085824914671628173626682246438530051407107800521045715415164484946... and c = 1.12762897595401376103508613947431975160374771449653856610031074284717... - Vaclav Kotesovec, Oct 07 2020

A194044 G.f. satisfies: A(x) = ( Sum_{n>=0} q^(n*(n+1)/2) )^4 where q=x*A(x)^2.

Original entry on oeis.org

1, 4, 38, 472, 6685, 102340, 1649446, 27574712, 473750970, 8313682000, 148383186924, 2685209034144, 49154880453275, 908609423877476, 16935710715505290, 317951375873760120, 6006975695929624776, 114120962913881862036, 2178813296304338702764
Offset: 0

Views

Author

Paul D. Hanna, Aug 12 2011

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 38*x^2 + 472*x^3 + 6685*x^4 + 102340*x^5 +...
where
(0) A(x)^(1/4) = 1 + x*A(x)^2 + x^3*A(x)^6 + x^6*A(x)^12 + x^10*A(x)^20 + x^15*A(x)^30 + x^21*A(x)^42 +... +...
(1) A(x) = 1/(1-x*A(x)^2) + 3*x*A(x)^2/(1-x^3*A(x)^6) + 5*x^2*A(x)^4/(1-x^5*A(x)^10) + 7*x^3*A(x)^6/(1-x^7*A(x)^14) +...
(2) A(x)^2 = 1/(1-x^2*A(x)^4) + 8*x*A(x)^2/(1-x^4*A(x)^8) + 27*x^2*A(x)^4/(1-x^6*A(x)^12) + 64*x^3*A(x)^6/(1-x^8*A(x)^16) +...
(3) A(x) = (1+x*A(x)^2)^4*(1-x^2*A(x)^4)^4 * (1+x^2*A(x)^4)^4*(1-x^4*A(x)^8)^4 * (1+x^3*A(x)^6)^4*(1-x^6*A(x)^12)^4 * (1+x^4*A(x)^8)^4*(1-x^8*A(x)^16)^4 *...
(4) log(A(x)) = 4*x*A(x)^2/(1+x*A(x)^2) + 4*(x^2*A(x)^4/(1+x^2*A(x)^4))/2  + 4*(x^3*A(x)^6/(1+x^3*A(x)^6))/3 + 4*(x^4*A(x)^8/(1+x^4*A(x)^8))/4 +...
Related expansions begin:
_ A(x)^(1/4) = 1 + x + 8*x^2 + 93*x^3 + 1272*x^4 + 19058*x^5 + 302705*x^6 + 5007234*x^7 + 85341048*x^8 +...+ A194043(n)*x^n +...
_ A(x)^2 = 1 + 8*x + 92*x^2 + 1248*x^3 + 18590*x^4 + 294032*x^5 + 4848456*x^6 + 82433472*x^7 + 1434755717*x^8 +...+ A194042(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x, T=sum(m=0, sqrtint(2*n+1), x^(m*(m+1)/2))+x*O(x^n)); A=(serreverse(x/T^8)/x)^(1/2); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,(x*A^2+x*O(x^n))^(m*(m+1)/2))^4);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,(2*m+1)*(x*A^2)^m/(1-(x*A^2+x*O(x^n))^(2*m+1))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,(m+1)^3*(x*A^2)^m/(1-(x*A^2+x*O(x^n))^(2*m+2)))^(1/2));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+(x*A^2)^m)*(1-(x*A^2)^(2*m)+x*O(x^n)))^4); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,4*(x*A^2)^m/(1+(x*A^2)^m+x*O(x^n))/m))); polcoeff(A, n)}

Formula

The g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} (2*n+1)*x^n*A(x)^(2*n)/(1 - x^(2*n+1)*A(x)^(4*n+2)),
(2) A(x)^2 = Sum_{n>=0} (n+1)^3*x^n*A(x)^(2*n)/(1 - x^(2*n+2)*A(x)^(4*n+4)),
(3) A(x) = Product_{n>=1} (1 + x^n*A(x)^(2*n))^4*(1 - x^(2*n)*A(x)^(4*n))^4,
(4) A(x) = exp( Sum_{n>=1} 4*(x^n*A(x)^(2*n)/(1 + x^n*A(x)^(2*n)))/n ),
(5) A(x/F(x)^8) = F(x)^4 where F(x) = Sum_{n>=0} x^(n*(n+1)/2),
due to q-series identities.
Self-convolution 2nd power equals A194042.
Self-convolution 4th root equals A194043.
Showing 1-2 of 2 results.