cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194102 a(n) = Sum_{j=1..n} floor(j*sqrt(2)); n-th partial sum of Beatty sequence for sqrt(2), A001951.

Original entry on oeis.org

1, 3, 7, 12, 19, 27, 36, 47, 59, 73, 88, 104, 122, 141, 162, 184, 208, 233, 259, 287, 316, 347, 379, 412, 447, 483, 521, 560, 601, 643, 686, 731, 777, 825, 874, 924, 976, 1029, 1084, 1140, 1197, 1256, 1316, 1378, 1441, 1506, 1572, 1639, 1708, 1778
Offset: 1

Views

Author

Clark Kimberling, Aug 15 2011

Keywords

Comments

The natural fractal sequence of A194102 is A194103; the natural interspersion is A194104. See A194029 for definitions.

Crossrefs

Programs

  • Magma
    [(&+[Floor(k*Sqrt(2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jun 05 2018
  • Mathematica
    a[n_]:=Sum[Floor[j*Sqrt[2]], {j, 1, n}]; Table[a[n], {n, 1, 90}]
  • PARI
    apply( A194102(n)=sum(k=1,n,sqrtint(k^2*2)), [1..99]) \\ M. F. Hasler, Jan 16 2021
    
  • PARI
    apply( {A194102(n)=if(n>1, (1+n=sqrtint(n^2*2))*n\2-A194102(n-=sqrtint(n^2\2)+1)-(1+n)*n, n)}, [1..99]) \\ M. F. Hasler, Apr 23 2022
    

Formula

a(n) = B*(B+1)/2 - C*(C+1) - a(C) where B = floor(sqrt(2)*n) and C = floor(B/(sqrt(2)+2)). - M. F. Hasler, Apr 23 2022