A194102 a(n) = Sum_{j=1..n} floor(j*sqrt(2)); n-th partial sum of Beatty sequence for sqrt(2), A001951.
1, 3, 7, 12, 19, 27, 36, 47, 59, 73, 88, 104, 122, 141, 162, 184, 208, 233, 259, 287, 316, 347, 379, 412, 447, 483, 521, 560, 601, 643, 686, 731, 777, 825, 874, 924, 976, 1029, 1084, 1140, 1197, 1256, 1316, 1378, 1441, 1506, 1572, 1639, 1708, 1778
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
[(&+[Floor(k*Sqrt(2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jun 05 2018
-
Mathematica
a[n_]:=Sum[Floor[j*Sqrt[2]], {j, 1, n}]; Table[a[n], {n, 1, 90}]
-
PARI
apply( A194102(n)=sum(k=1,n,sqrtint(k^2*2)), [1..99]) \\ M. F. Hasler, Jan 16 2021
-
PARI
apply( {A194102(n)=if(n>1, (1+n=sqrtint(n^2*2))*n\2-A194102(n-=sqrtint(n^2\2)+1)-(1+n)*n, n)}, [1..99]) \\ M. F. Hasler, Apr 23 2022
Formula
a(n) = B*(B+1)/2 - C*(C+1) - a(C) where B = floor(sqrt(2)*n) and C = floor(B/(sqrt(2)+2)). - M. F. Hasler, Apr 23 2022
Comments