cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A279439 Number of ways to place 5 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.

Original entry on oeis.org

0, 0, 45, 2304, 34020, 270720, 1475145, 6209280, 21654864, 65422080, 176467005, 434206080, 990140580, 2117816064, 4288771305, 8284308480, 15355471680, 27446584320, 47501098029, 79872376320, 130866406020, 209448328320, 328150139625, 504222960384, 761083938000
Offset: 1

Views

Author

Heinrich Ludwig, Dec 21 2016

Keywords

Comments

Column 6 of triangle A279445.
Rotations and reflections of placements are counted. For numbers if they are to be ignored see A279449.
For condition "no more than 2 points on straight lines at any angle", see A194190.

Crossrefs

Same problem but 2,3,4,6..9 points: A083374, A279437, A279438, A279440, A279441, A279442, A279443.

Programs

  • Mathematica
    Table[(n^10 - 30 n^8 + 90 n^7 - 27 n^6 - 270 n^5 + 500 n^4 - 360 n^3 + 96 n^2)/120, {n, 25}] (* or *)
    Rest@ CoefficientList[Series[9 x^3*(5 + 201 x + 1239 x^2 + 1755 x^3 + 335 x^4 - 165 x^5 - 11 x^6 + x^7)/(1 - x)^11, {x, 0, 25}], x] (* Michael De Vlieger, Dec 22 2016 *)
  • PARI
    concat(vector(2), Vec(9*x^3*(5 +201*x +1239*x^2 +1755*x^3 +335*x^4 -165*x^5 -11*x^6 +x^7) / (1 -x)^11 + O(x^30))) \\ Colin Barker, Dec 22 2016

Formula

a(n) = (n^10 -30*n^8 +90*n^7 -27*n^6 -270*n^5 +500*n^4 -360*n^3 +96*n^2)/120.
a(n) = 11*a(n-1) -55*a(n-2) +165*a(n-3) -330*a(n-4) +462*a(n-5) -462*a(n-6) +330*a(n-7) -165*a(n-8) +55*a(n-9) -11*a(n-10) +*a(n-11).
G.f.: 9*x^3*(5 +201*x +1239*x^2 +1755*x^3 +335*x^4 -165*x^5 -11*x^6 +x^7) / (1 -x)^11. - Colin Barker, Dec 22 2016

A194193 Square array read by antidiagonals downwards: T(n,k) = number of ways to arrange k indistinguishable points on an n X n square grid so that no three points are collinear at any angle.

Original entry on oeis.org

1, 0, 4, 0, 6, 9, 0, 4, 36, 16, 0, 1, 76, 120, 25, 0, 0, 78, 516, 300, 36, 0, 0, 28, 1278, 2148, 630, 49, 0, 0, 2, 1668, 9498, 6768, 1176, 64, 0, 0, 0, 998, 25052, 47331, 17600, 2016, 81, 0, 0, 0, 204, 36698, 215448, 175952, 40120, 3240, 100, 0, 0, 0, 11, 26700, 620210
Offset: 1

Views

Author

R. H. Hardin, Aug 18 2011

Keywords

Comments

Columns 4..7 are A175383, A194190, A194191, A194192 respectively. - Heinrich Ludwig, Nov 16 2016

Examples

			Table starts:
...1.....0.......0........0..........0...........0............0............0
...4.....6.......4........1..........0...........0............0............0
...9....36......76.......78.........28...........2............0............0
..16...120.....516.....1278.......1668.........998..........204...........11
..25...300....2148.....9498......25052.......36698........26700.........8242
..36...630....6768....47331.....215448......620210......1073076......1035097
..49..1176...17600...175952....1189868.....5367308.....15657764.....28228158
..64..2016...40120...545764....5199888....34678364....159413700....491910848
..81..3240...82608..1461672...18520572...169259212...1108580092...5122725512
.100..4950..157252..3507553...56978440...682686652...6030207624..38914424892
.121..7260..280988..7701638..155627304..2356999994..26852315940.229093733030
.144.10296..477012.15773526..388897892..7294368210.104865006648
.169.14196..775172.30375194..894254904.20227526910
.196.19110.1214768.55695587.1932504496
.225.25200.1844512.97777392
.256.32640.2725000
...
Some solutions for n=4, k=4:
..0..0..1..0....0..0..0..0....0..0..0..0....0..0..1..0....1..0..0..0
..1..0..0..0....1..0..0..0....0..0..1..0....1..0..0..0....0..0..0..1
..0..0..0..0....0..1..0..1....1..0..1..0....1..0..0..0....0..0..0..1
..0..0..1..1....0..1..0..0....0..1..0..0....0..0..0..1....1..0..0..0
		

Crossrefs

Column 1 is A000290.
Column 2 is A083374.
Column 3 is A045996.
Column 4 is A175383.
Column 5 is A194190.
Column 6 is A194191.
Column 7 is A194192.

A235456 Number of non-equivalent (mod D_4) ways to arrange 5 points on an n X n square grid so that no three points are collinear.

Original entry on oeis.org

5, 217, 3192, 27041, 149217, 650566, 2317137, 7124316, 19459757, 48617666, 111797647, 241575473
Offset: 3

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

Column 5 of A235453.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by A194190, n >= 3.

Examples

			There are a(3) = 5 non-equivalent ways to place 5 points (X) on a 3 X 3 grid:
  X . X    X . X    . X X    X X .    X . X
  X . X    X . .    X . X    X . .    X X .
  . X .    . X X    . X .    . X X    . X .
		

Crossrefs

Cf. A235453, A194190, A235454 (3 points), A235455 (4 points), A235457 (6 points), A235458 (7 points)

Extensions

a(13), a(14) from Heinrich Ludwig, Nov 16 2016
Showing 1-3 of 3 results.