A279445
Triangle read by rows: T(n, k) is the number of ways to place k points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
Original entry on oeis.org
1, 1, 1, 4, 6, 4, 1, 1, 9, 36, 78, 90, 45, 6, 1, 16, 120, 528, 1428, 2304, 2040, 816, 90, 1, 25, 300, 2200, 10600, 34020, 71400, 93000, 67950, 22650, 2040, 1, 36, 630, 6900, 51525, 270720, 1005720, 2602800, 4531950, 4987800, 3110940, 888840, 67950, 1, 49, 1176, 17934
Offset: 1
The table begins with T(1, 0):
1 1
1 4 6 4 1
1 9 36 78 90 45 6
1 16 120 528 1428 2304 2040 816 90
1 25 300 2200 10600 34020 71400 93000 67950 22650 2040
...
T(3, 2) = 36 because there are 36 ways to place 2 points on a 3 X 3 square grid so that no more than 2 points are on a vertical or horizontal straight line.
A175383
Number of complete quadrangles on an n X n grid (or geoplane).
Original entry on oeis.org
0, 1, 78, 1278, 9498, 47331, 175952, 545764, 1461672, 3507553, 7701638, 15773526, 30375194, 55695587, 97777392, 165310348, 270478344, 430196181, 666685134, 1010083690, 1498720098, 2182544223
Offset: 1
From _R. H. Hardin_, Aug 18 2011: (Start)
Some solutions for 3 X 3:
0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0
1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0
(End)
a(7)-a(22) corrected by
Nathaniel Johnston, based on another correction by Michal ForiĊĦek, Sep 06 2011
A235453
Triangle T(n, k) = Number of non-equivalent (mod D_4) ways to arrange k indistinguishable points on an n X n square grid so that no three of them are collinear. Triangle read by rows.
Original entry on oeis.org
1, 0, 1, 2, 1, 1, 3, 8, 13, 15, 5, 1, 3, 21, 70, 181, 217, 142, 28, 4, 6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5, 6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11, 10, 171, 2266, 22302, 149217, 672506, 1958674, 3531747, 3695848, 2068757
Offset: 1
Triangle begins
1, 0;
1, 2, 1, 1;
3, 8, 13, 15, 5, 1;
3, 21, 70, 181, 217, 142, 28, 4;
6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5;
6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11;
...
A194190
Number of ways to arrange 5 indistinguishable points on an n X n square grid so that no three points are collinear at any angle.
Original entry on oeis.org
0, 0, 28, 1668, 25052, 215448, 1189868, 5199888, 18520572, 56978440, 155627304, 388897892, 894254904, 1932504496, 3945470564, 7669533756, 14291010972, 25694009628, 44662697948, 75451394832, 124066723008, 199190308172
Offset: 1
Some solutions for 3 X 3:
..0..1..0....1..0..1....0..1..1....1..1..0....1..1..0....1..1..0....1..0..1
..0..1..1....1..1..0....1..0..0....1..0..1....1..0..0....0..0..1....1..0..0
..1..0..1....0..1..0....0..1..1....0..0..1....0..1..1....1..1..0....0..1..1
A194191
Number of ways to arrange 6 indistinguishable points on an n X n square grid so that no three points are collinear at any angle.
Original entry on oeis.org
0, 0, 2, 998, 36698, 620210, 5367308, 34678364, 169259212, 682686652, 2356999994, 7294368210, 20227526910, 52008171998, 124422857864, 279767468172, 596674510744, 1218556387684, 2385034544810, 4509309201242
Offset: 1
Some solutions for 4 X 4:
..1..0..1..0....0..1..1..0....1..0..0..1....0..1..0..0....0..1..0..1
..0..0..0..1....1..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1
..0..1..0..0....0..1..1..0....0..0..0..0....0..0..1..0....0..0..1..0
..0..0..1..1....1..0..0..0....0..1..1..0....1..0..0..1....1..0..1..0
A194192
Number of ways to arrange 7 indistinguishable points on an n X n square grid so that no three points are collinear at any angle.
Original entry on oeis.org
0, 0, 0, 204, 26700, 1073076, 15657764, 159413700, 1108580092, 6030207624, 26852315940, 104865006648, 354993232192, 1098793355508, 3109294280324
Offset: 1
Some solutions for 4 X 4:
..0..0..1..1....1..0..1..0....0..0..1..0....0..0..0..1....1..0..1..0
..0..0..0..1....0..0..0..1....0..0..1..1....1..0..1..0....0..1..0..0
..1..1..0..0....0..1..0..1....1..1..0..0....1..0..1..0....0..1..0..1
..0..1..1..0....0..1..1..0....0..1..0..1....0..1..0..1....1..0..1..0
Showing 1-6 of 6 results.
Comments