A194222 a(n) = floor(Sum_{k=1..n} frac(k/5)), where frac() = fractional part.
0, 0, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 22, 22, 23, 24, 24, 24, 24, 25, 26, 26, 26, 26, 27, 28, 28, 28, 28, 29, 30
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A118015.
Programs
-
Maple
seq(floor((n+1)/5)+floor((n+2)/5), n=1..80); # Ridouane Oudra, Dec 14 2021
-
Mathematica
r = 1/5; a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]] Table[a[n], {n, 1, 90}] (* A194222 *) s[n_] := Sum[a[k], {k, 1, n}] Table[s[n], {n, 1, 100}] (* A118015 *) LinearRecurrence[{1,0,0,0,1,-1},{0,0,1,2,2,2},80] (* Harvey P. Dale, Jun 06 2024 *)
Formula
From Chai Wah Wu, Jun 10 2020: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^3*(x + 1)/((x-1)^2*(1+x+x^2+x^3+x^4)). (End)
a(n) = floor((n+1)/5) + floor((n+2)/5). - Ridouane Oudra, Dec 14 2021