A194258 Second inverse function (numbers of columns) for pairing function A060734.
1, 1, 2, 2, 1, 2, 3, 3, 3, 1, 2, 3, 4, 4, 4, 4, 1, 2, 3, 4, 5, 5, 5, 5, 5, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 3, 4, 5, 6
Offset: 1
Examples
The start of the sequence as triangle array read by rows: 1; 1,2,2; 1,2,3,3,3; 1,2,3,4,4,4,4; . . . Row number k contains 2k-1 numbers 1,2,...k-1,k,k,...k (k times repetition "k").
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
Flatten[Table[Join[Range[n-1],Table[n,{n}]],{n,10}]] (* Harvey P. Dale, Jun 23 2013 *)
-
Python
t=int(math.sqrt(n-1)) +1 j=min(t,n-(t-1)**2)
Formula
a(n) = min{t; n - (t - 1)^2}, where t=floor(sqrt(n-1))+1.
Comments