A194280 Inverse permutation to A081344.
1, 2, 5, 3, 6, 9, 13, 8, 4, 7, 12, 18, 25, 19, 14, 10, 15, 20, 26, 33, 41, 32, 24, 17, 11, 16, 23, 31, 40, 50, 61, 51, 42, 34, 27, 21, 28, 35, 43, 52, 62, 73, 85, 72, 60, 49, 39, 30, 22, 29, 38, 48, 59, 71, 84, 98, 113
Offset: 1
Keywords
Examples
From _Boris Putievskiy_, Mar 14 2013: (Start) The start of the sequence as table: 1....2...6...7..15..16..28... 3....5...9..12..20..23..35... 4....8..13..18..26..31..43... 10..14..19..25..33..40..52... 11..17..24..32..41..50..62... 21..27..34..42..51..61..73... 22..30..39..49..60..72..85... ... The start of the sequence as triangular array read by rows: 1; 2,5,3; 6,9,13,8,4; 7,12,18,25,19,14,10; 15,20,26,33,41,32,24,17,11; 16,23,31,40,50,61,51,42,34,27,21; 28,35,43,52,62,73,85,72,60,49,39,30,22; ... Row number r contains 2*r-1 numbers. (End)
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Python
t=int(math.sqrt(n-1))+1 i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1) j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2) m=(i+j-1)*(i+j-2)/2+j
Formula
a(n) = (i+j-1)*(i+j-2)/2+j, where
i = mod(t;2)*min{t; n - (t - 1)^2} + mod(t + 1; 2)*min{t; t^2 - n + 1}
j = mod(t;2)*min{t; t^2 - n + 1} + mod(t + 1; 2)*min{t; n - (t - 1)^2},
t = int(math.sqrt(n-1))+1.
Comments