A194285 Triangular array: g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0
Offset: 1
Examples
1 1..1 1..1..1 1..1..1..1 1..1..1..1..1 1..1..2..1..1..0 1..1..1..1..1..1..1 1..1..1..2..0..1..1..1 Take n=6, r=sqrt(2): (r)=-1+r=0.41412... in [2/6,3/6) (2r)=-2+2r=0.828... in [4/6,5/6) (3r)=-4+3r=0.242... in [1/6,2/6) (4r)=-5+4r=0.656... in [3/6,4/6) (5r)=-7+5r=0.071... in [0/6,1/6) (6r)=-8+6r=0.485... in [2/6,3/6), so that row 6 is 1..1..2..1..1..0.
References
- Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, pages 23-45.
Links
- Ronald L. Graham, Shen Lin, Chio-Shih Lin, Spectra of numbers, Math. Mag. 51 (1978), 174-176.
Programs
-
Mathematica
r = Sqrt[2]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n}] TableForm[Table[g[n, k], {n, 1, 20}, {k, 1, n}]] Flatten[%] (* A194285 *)
Comments