cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194285 Triangular array: g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Aug 21 2011

Keywords

Comments

Row n of A194285 counts fractional parts (i*r), for i=1,2,...,n, in each of the intervals indicated. It is of interest to count (i*r) for i=1,2,...,s(n) for various choices of s(n), such as 2n, n^2, and 2^n. In each case, (n-th row sum)=s(n). Examples:
...
r.................s(n)....g(n,k)
sqrt(2)...........n.......A194285
sqrt(2)...........2n......A194286
sqrt(2)...........n^2.....A194287
sqrt(2)...........2^n.....A194288
sqrt(3)...........n.......A194289
sqrt(3)...........2n......A194290
sqrt(3)...........n^2.....A194291
sqrt(3)...........2^n.....A194292
tau...............n.......A194293, tau=(1+sqrt(5))/2
tau...............2n......A194294
tau...............n^2.....A194295
tau...............2^n.....A194296
(-1+sqrt(3))/2....n.......A194297
(-1+sqrt(3))/2....2n......A194298
(-1+sqrt(3))/2....n^2.....A194299
(-1+sqrt(3))/2....2^n.....A194300
sqrt(5)...........n.......A194301
sqrt(5)...........2n......A194302
sqrt(5)...........n^2.....A194303
sqrt(5)...........2^n.....A194304
pi................n.......A194305
pi................2n......A194306
pi................n^2.....A194307
pi................2^n.....A194308
e.................n.......A194309
e.................2n......A194310
e.................n^2.....A194311
e.................2^n.....A194312
sqrt(6)...........n.......A194313
sqrt(6)...........2n......A194314
sqrt(6)...........n^2.....A194315
sqrt(6)...........2^n.....A194316
sqrt(8)...........n.......A194317
sqrt(8)...........2n......A194318
sqrt(8)...........n^2.....A194319
sqrt(8)...........2^n.....A194320
sqrt(1/2).........n.......A194321
sqrt(1/2).........2n......A194322
sqrt(1/2).........n^2.....A194323
sqrt(1/2).........2^n.....A194324
2-sqrt(2).........n.......A194325
2-sqrt(2).........2n......A194326
2-sqrt(2).........n^2.....A194327
2-sqrt(2).........2^n.....A194328
2-sqrt(3).........n.......A194329
2-sqrt(3).........2n......A194330
2-sqrt(3).........n^2.....A194331
2-sqrt(3).........2^n.....A194332
2-tau.............n.......A194333
2-tau.............2n......A194334
2-tau.............n^2.....A194335
2-tau.............2^n.....A194336
3-sqrt(5).........n.......A194337
3-sqrt(5).........2n......A194338
3-sqrt(5).........n^2.....A194339
3-sqrt(5).........2^n.....A194340
3-e...............n.......A194341
3-e...............2n......A194342
3-e...............n^2.....A194343
3-e...............2^n.....A194344
...
Questions for each such triangle:
(1) Which rows are constant?
(2) Maximal number of distinct numbers per row?

Examples

			1
1..1
1..1..1
1..1..1..1
1..1..1..1..1
1..1..2..1..1..0
1..1..1..1..1..1..1
1..1..1..2..0..1..1..1
Take n=6, r=sqrt(2):
(r)=-1+r=0.41412... in [2/6,3/6)
(2r)=-2+2r=0.828... in [4/6,5/6)
(3r)=-4+3r=0.242... in [1/6,2/6)
(4r)=-5+4r=0.656... in [3/6,4/6)
(5r)=-7+5r=0.071... in [0/6,1/6)
(6r)=-8+6r=0.485... in [2/6,3/6),
so that row 6 is 1..1..2..1..1..0.
		

References

  • Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, pages 23-45.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[2];
    f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
    g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
    TableForm[Table[g[n, k], {n, 1, 20}, {k, 1, n}]]
    Flatten[%]  (* A194285 *)