A194296 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=2^n, r=(1+sqrt(5))/2, the golden ratio.
2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 6, 6, 7, 7, 6, 10, 11, 10, 12, 10, 11, 19, 19, 17, 19, 19, 17, 18, 32, 33, 32, 31, 33, 32, 31, 32, 57, 57, 57, 56, 57, 58, 56, 58, 56, 102, 102, 103, 102, 102, 103, 102, 103, 103, 102, 187, 186, 187, 185, 185, 186, 187, 187, 186, 187
Offset: 1
Examples
First seven rows: 2 2...2 3...2...3 4...4...4...4 6...6...7...7...6 10..11..10..12..10..11 19..19..17..19..19..17..18
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = GoldenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194296 *)
Comments