cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194353 G.f.: exp( Sum_{n>=1} (x^n/n)/sqrt(1 - 4*x^n) ).

Original entry on oeis.org

1, 1, 3, 9, 32, 114, 431, 1633, 6306, 24466, 95604, 374920, 1475731, 5822941, 23027817, 91225983, 361945480, 1437855016, 5718242653, 22762417519, 90684186378, 361540944078, 1442313708600, 5757140994990, 22991764612516, 91861397186492
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 32*x^4 + 114*x^5 + 431*x^6 +...
where
log(A(x)) = x/sqrt(1-4*x) + (x^2/2)/sqrt(1-4*x^2) + (x^3/3)/sqrt(1-4*x^3) +...
Other expansions:
log(A(x)) = x*(1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...)
+ x^2/2*(1 + 2*x^2 + 6*x^4 + 20*x^6 + 70*x^8 + 252*x^10 +...)
+ x^3/3*(1 + 2*x^3 + 6*x^6 + 20*x^9 + 70*x^12 + 252*x^15 +...) +...
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 85*x^4/4 + 351*x^5/5 + 1535*x^6/6 + 6469*x^7/7 +...
1/A(x) = (1-x)*(1-x^2)^2*(1-x^3)^6*(1-x^4)^20*(1-x^5)^70*(1-x^6)^252*...
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[x^j/j/Sqrt[1 - 4*x^j], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 10 2021 *)
    nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^Binomial[2*k - 2, k - 1], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 10 2021 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(x^m/m)/sqrt(1-4*x^m+x*O(x^n)))),n)}

Formula

G.f.: Product_{n>=1} 1/(1-x^n)^binomial(2*n-2,n-1).
a(n) ~ 2^(2*n-1) * exp(3*n^(1/3)/4 + c) / (sqrt(3*Pi) * n^(5/6)), where c = Sum_{k>=2} 1/(k * 4^k * sqrt(1 - 4^(1-k))) = 0.0426953980609366317948752143053832860841846208508627487697950... - Vaclav Kotesovec, May 10 2021