A194366 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(n)) has norm 1 and can be written as x+y*sqrt(d) with integers x, y where d is the squarefree part of n.
3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 70, 71, 75, 76, 78, 79, 83, 86, 87, 88, 91, 92, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 112, 114, 115
Offset: 1
Keywords
Examples
35 belongs to this sequence because x^2 + 35*y^2 = 1 has the integer solution x=6, y=1.
Programs
-
Mathematica
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == 1, k1 = Max[Denominator[d1], Denominator[d2]]; If[k1 == 1, AppendTo[cr, n]]]], {n, 2, 100}]; cr
Extensions
Definition clarified by Emmanuel Vantieghem, Mar 06 2017
Comments