A194373
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(3) and < > denotes fractional part.
3, 7, 11, 29, 33, 37, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 59, 63, 67, 85, 89, 93, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 111, 115, 119, 123, 141, 145, 149, 153, 155, 156, 157, 159, 160, 161, 163, 164, 165, 167, 171, 175, 179, 197
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
r = Sqrt[3]; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t1, 1]] (* A194371 *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}]; Flatten[Position[t2, 1]] (* A194372 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t3, 1]] (* A194373 *)
-
PARI
isok(n) = sum(k=1, n, frac(1/2+k*sqrt(3)) - frac(k*sqrt(3))) > 0; \\ Michel Marcus, Sep 10 2018
Comments