A194368
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=sqrt(2) and < > denotes fractional part.
2, 4, 12, 14, 16, 24, 26, 28, 70, 72, 74, 82, 84, 86, 94, 96, 98, 140, 142, 144, 152, 154, 156, 164, 166, 168, 408, 410, 412, 420, 422, 424, 432, 434, 436, 478, 480, 482, 490, 492, 494, 502, 504, 506, 548, 550, 552, 560, 562, 564, 572, 574, 576, 816, 818
Offset: 1
Keywords
References
- Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963.
Links
- Henk Bruin and Robbert Fokkink, On the records and zeros of a deterministic random walk, arXiv:2503.11734 [math.DS], 2025. See p. 8.
- Ronald L. Graham, Shen Lin, and Chio-Shih Lin, Spectra of numbers, Math. Mag. 51 (1978), 174-176.
Programs
-
Mathematica
r = Sqrt[2]; c = 1/2; x[n_] := Sum[FractionalPart[k*r], {k, 1, n}] y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}] t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t1, 1]] (* empty *) t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}]; Flatten[Position[t2, 1]] (* A194368 *) %/2 (* A194369 *) t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}]; Flatten[Position[t3, 1]] (* A194370 *)
Comments