A194446 Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
1, 2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 2, 1, 15, 1, 2, 1, 4, 1, 1, 22, 1, 2, 1, 4, 1, 2, 1, 30, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77, 1, 2, 1
Offset: 1
Examples
Written as an irregular triangle the sequence begins: 1; 2; 3; 1, 5; 1, 7; 1, 2, 1, 11; 1, 2, 1, 15; 1, 2, 1, 4, 1, 1, 22; 1, 2, 1, 4, 1, 2, 1, 30; 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42; 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56; 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77; ... From _Omar E. Pol_, Aug 18 2013: (Start) Illustration of initial terms (first seven regions): . _ _ _ _ _ . _ _ _ |_ _ _ _ _| . _ _ _ _ |_ _ _| |_ _| . _ _ |_ _ _ _| |_| . _ _ _ |_ _| |_ _| |_| . _ _ |_ _ _| |_| |_| . _ |_ _| |_| |_| |_| . |_| |_| |_| |_| |_| . . 1 2 3 1 5 1 7 . The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610). . _ _ _ _ _ . 7 _ _ _ | . 6 _ _ _|_ | . 5 _ _ | | . 4 _ _|_ | | . 3 _ _ | | | . 2 _ | | | | . 1 | | | | | . . 1 2 3 4 5 . Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment. . /\ . / \ . /\ / \ . / \ / \ . /\ / \ /\/ \ . /\ / \ /\/ \ / 1 \ . /\/ \/ \/ 1 \/ \ . 1 2 3 5 7 . (End)
Links
- Robert Price, Table of n, a(n) for n = 1..5603
- Omar E. Pol, Illustration of the seven regions of 5
Crossrefs
Programs
-
Mathematica
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2]; A194446 = {}; l = {}; For[j = 1, j <= 30, j++, mx = Max@lex[j][[j]]; AppendTo[l, mx]; For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]]; AppendTo[A194446, j - i]; ]; A194446 (* Robert Price, Jul 25 2020 *)
Comments