A194458 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 5.
1, 3, 6, 10, 15, 17, 21, 27, 35, 45, 48, 54, 63, 75, 90, 94, 102, 114, 130, 150, 155, 165, 180, 200, 225, 227, 231, 237, 245, 255, 259, 267, 279, 295, 315, 321, 333, 351, 375, 405, 413, 429, 453, 485, 525, 535, 555, 585, 625, 675, 678, 684, 693, 705, 720, 726
Offset: 0
Keywords
Examples
n = 38: n+1 = 39 = 124_5, thus a(38) = (C(5,2)*15^0*3 + C(3,2)*15^1)*2 + C(2,2)*15^2 = (10*1*3 + 3*15)*2 + 1*225 = 375.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 53.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See p. 1.
Crossrefs
Programs
-
Maple
a:= proc(n) local l, m, h, j; m:= n+1; l:= []; while m>0 do l:= [l[], irem (m, 5, 'm')+1] od; h:= 0; for j to nops(l) do h:= h*l[j] +binomial (l[j], 2) *15^(j-1) od: h end: seq(a(n), n=0..100);
-
Mathematica
a[n_] := Module[{l, m, r, h, j}, m = n+1; l = {}; While[m>0, l = Append[l, {m, r} = QuotientRemainder[m, 5]; r+1]]; h = 0; For[j = 1, j <= Length[l], j++, h = h*l[[j]] + Binomial [l[[j]], 2] *15^(j-1)]; h]; Table [a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
-
Python
from math import prod from gmpy2 import digits def A194458(n): return sum(prod(int(d)+1 for d in digits(m,5)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
-
Python
from math import prod from gmpy2 import digits def A194458(n): d = list(map(lambda x:int(x)+1,digits(n+1,5)[::-1])) return sum((b-1)*prod(d[a:])*15**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025
Formula
a(n) = ((C(d0+1,2)*15^0*(d1+1) + C(d1+1,2)*15^1)*(d1+1) + C(d1+1,2)*15^1)*(d2+1) + C(d2+1,2)*15^2 ..., where d_k...d_1d_0 is the base 5 expansion of n+1 and 15 = binomial(5+1,2). The formula generalizes to other prime bases p.
Extensions
Edited by Alois P. Heinz, Sep 06 2011
Comments