A194472 Erdős-Nicolas numbers.
24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, 61900800, 91963648, 211891200, 1931236608, 2013143040, 4428914688, 10200236032, 214204956672
Offset: 1
Examples
The divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24 and 1 + 2 + 3 + 4 + 6 + 8 = 24, hence 24 is in the list. The divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. The first seven of these add up to 36, but the first eight add up to 52, therefore 48 is not on the list.
References
- Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, p. 141.
Links
- P. Erdős and J.-L. Nicolas, Répartition des nombres superabondants, Bull. Soc. Math. France, Vol. 103, No. 1 (1975), pp. 65-90.
- Wikipedia, Erdős-Nicolas number.
Programs
-
Mathematica
subtr = If[#1 < #2, Throw[#1], #1 - #2] &; selDivs[n_] := Catch@Fold[subtr, n, Drop[Divisors[n], -2]]; erdNickNums = {}; Do[If[selDivs[n] == 0, AppendTo[erdNickNums, n]], {n, 2, 10^5}]; erdNickNums (* Based on the program by Bobby R. Treat and Robert G. Wilson v for A064510 *)
-
PARI
isok(n) = {if (sigma(n) <= 2*n, return (0)); my(d = divisors(n), s = 0); for (k=1, #d-2, s += d[k]; if (s == n, return (1)); if (s > n, break);); return (0);} \\ Michel Marcus, Feb 09 2019
-
Python
from itertools import accumulate, count, islice from sympy import divisors def A194472_gen(startvalue=1): # generator of terms >= startvalue return (n for n in count(max(startvalue,1)) if any(s == n for s in accumulate(divisors(n)[:-2]))) A194472_list = list(islice(A194472_gen(),5)) # Chai Wah Wu, Feb 18 2022
Extensions
More terms from M. F. Hasler, Aug 24 2011
Comments