cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194485 T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.

Original entry on oeis.org

1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 20, 45, 15, 0, 0, 15, 120, 105, 21, 0, 0, 6, 207, 455, 210, 28, 0, 0, 1, 234, 1347, 1330, 378, 36, 0, 0, 0, 165, 2817, 5922, 3276, 630, 45, 0, 0, 0, 63, 4135, 19362, 20307, 7140, 990, 55, 0, 0, 0, 9, 4080, 47010, 94584, 58527, 14190, 1485
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Table starts
...1....0......0.......0.........0..........0...........0............0
...3....3......1.......0.........0..........0...........0............0
...6...15.....20......15.........6..........1...........0............0
..10...45....120.....207.......234........165..........63............9
..15..105....455....1347......2817.......4135........4080.........2463
..21..210...1330....5922.....19362......47010.......83745.......105663
..28..378...3276...20307.....94584.....337860......927471......1931571
..36..630...7140...58527....365904....1790472.....6924357.....21123489
..45..990..14190..148239...1193283....7622340....39196161....162957252
..55.1485..26235..339669...3413619...27489825...180512640....974497260
..66.2145..45760..718344...8800704...87018360...708150465...4794685500
..78.3003..76076.1422564..20845968..247874770..2442836682..20207649891
..91.4095.121485.2666664..46017972..647091588..7582054194..75074999142
.105.5460.187460.4771221..95710797.1569661600.21540941994.251128663929
.120.7140.280840.8201466.189154056.3576049620.56763356130.768641935191

Examples

			Some solutions for n=5, k=4:
......0..........0..........0..........1..........0..........0..........0
.....0.0........0.1........0.1........1.0........0.0........0.1........0.0
....0.0.0......0.0.1......1.0.0......0.0.0......0.0.0......0.0.0......1.1.0
...0.0.1.1....0.0.0.0....0.0.1.0....0.0.1.0....0.0.1.1....0.0.0.0....0.0.0.0
..0.1.0.0.1..0.1.1.0.0..0.1.0.0.0..0.1.0.0.0..0.0.1.1.0..0.1.1.0.1..1.0.1.0.0
		

Crossrefs

Column 1 is A000217.
Column 2 is A050534(n+1).
Column 3 is A093566(n+2).

Formula

Empirical:
T(n,1) = (1/2)*n^2 + (1/2)*n
T(n,2) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n
Empirical: general T(n,k,z) for fewer than z points in any row or diagonal is polynomial in n of degree 2k with lead coefficient 1/(2^k*k!) for small k.
T(n,1,2) = (1/2)*n^2 + (1/2)*n
T(n,1,3) = (1/2)*n^2 + (1/2)*n
T(n,1,4) = (1/2)*n^2 + (1/2)*n
T(n,2,2) = (1/8)*n^4 - (1/4)*n^3 - (1/8)*n^2 + (1/4)*n
T(n,2,3) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,2,4) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3,3) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n
T(n,3,4) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4,3) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n
T(n,4,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5,3) = (1/3840)*n^10 + (1/768)*n^9 - (7/384)*n^8 + (37/1920)*n^7 + (737/3840)*n^6 - (2347/3840)*n^5 + (101/192)*n^4 + (93/320)*n^3 - (7/10)*n^2 + (3/10)*n
T(n,5,4) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6,4) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7,4) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n