cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381712 Euler transform of n * A194532(n).

Original entry on oeis.org

1, 1, 43, 316, 2563, 17284, 135843, 903141, 6153645, 39839122, 256023118, 1589382754, 9751548710, 58451287319, 345478493273, 2006641555356, 11498560570683, 64940715401160, 362249937059777, 1995639600211016, 10870475203155005, 58563229198239242, 312277069694594537
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^3, 2)*x^k/k)))

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^(k * A194532(k)).
G.f.: exp( Sum_{k>=1} sigma_2(k^3) * x^k/k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} sigma_2(k^3) * a(n-k).

A381713 a(n) = J_9(n)/J_3(n), where J_k is the k-th Jordan totient function.

Original entry on oeis.org

1, 73, 757, 4672, 15751, 55261, 117993, 299008, 551853, 1149823, 1772893, 3536704, 4829007, 8613489, 11923507, 19136512, 24142483, 40285269, 47052741, 73588672, 89320701, 129421189, 148048057, 226349056, 246109375, 352517511, 402300837, 551263296
Offset: 1

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*e) * (1 + 1/p^3 + 1/p^6); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 28] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
    a(n) = J(n, 9)/J(n, 3);
    
  • PARI
    a(n) = {my(p = factor(n)[, 1]); n^6 * prod(i = 1, #p, 1 + 1/p[i]^3 + 1/p[i]^6);} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = A069094(n)/A059376(n).
a(n) = n^6 * Product_{distinct primes p dividing n} (1 + 1/p^3 + 1/p^6).
From Amiram Eldar, Mar 05 2025: (Start)
Dirichlet g.f.: zeta(s-6) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{p prime} (1 + 1/p^4 + 1/p^7) = 1.08635980686198102055... .
Sum_{n>=1} 1/a(n) = zeta(6)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^15) = 1.01533121878447451064... . (End)
Showing 1-2 of 2 results.