A194543 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n into parts p_i such that |p_i - p_j| >= k for i != j.
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 2, 2, 1, 1, 7, 3, 2, 2, 1, 1, 11, 4, 3, 2, 2, 1, 1, 15, 5, 3, 3, 2, 2, 1, 1, 22, 6, 4, 3, 3, 2, 2, 1, 1, 30, 8, 5, 4, 3, 3, 2, 2, 1, 1, 42, 10, 6, 4, 4, 3, 3, 2, 2, 1, 1, 56, 12, 7, 5, 4, 4, 3, 3, 2, 2, 1, 1, 77, 15, 9, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 0
Examples
T(7,3) = 3: [7], [6,1], [5,2]. T(23,6) = 11: [23], [22,1], [21,2], [20,3], [19,4], [18,5], [17,6], [16,7], [15,8], [15,7,1], [14,8,1]. Triangle begins: 1; 1, 1; 2, 1, 1; 3, 2, 1, 1; 5, 2, 2, 1, 1; 7, 3, 2, 2, 1, 1; 11, 4, 3, 2, 2, 1, 1; 15, 5, 3, 3, 2, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..140
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; if n<0 then 0 elif n=0 then 1 else add(b(n-i-j, i+j, k), j=k..n-i) fi end: T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n): seq(seq(T(n, k), k=0..n), n=0..20);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n<0, 0, If[n == 0, 1, Sum[b[n-i-j, i+j, k], {j, k, n-i}]]]; T[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
Formula
G.f. of column k: Sum_{j>=0} x^(j*((j-1)*k/2+1))/Product_{i=1..j} (1-x^i).
Comments