A194547 Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n, with partitions in lexicographic order.
0, -1, 1, -2, 0, 2, -3, -1, 1, 0, 3, -4, -2, 0, -1, 2, 1, 4, -5, -3, -1, -2, 1, 0, 3, -1, 2, 1, 5, -6, -4, -2, -3, 0, -1, 2, -2, 1, 0, 4, 0, 3, 2, 6, -7, -5, -3, -4, -1, -2, 1, -3, 0, -1, 3, -1, 2, 1, 5, -2, 1, 0, 4, 3, 2, 7, -8, -6, -4, -5, -2, -3, 0, -4, -1
Offset: 1
Examples
Written as a triangle: 0; -1,1; -2,0,2; -3,-1,1,0,3; -4,-2,0,-1,2,1,4; -5,-3,-1,-2,1,0,3,-1,2,1,5; -6,-4,-2,-3,0,-1,2,-2,1,0,4,0,3,2,6; -7,-5,-3,-4,-1,-2,1,-3,0,-1,3,-1,2,1,5,-2,1,0,4,3,2,7;
Links
- Alois P. Heinz, Rows n = 1..26, flattened
Programs
-
Maple
T:= proc(n) local b, l; b:= proc(n, i, t) if n=0 then l:=l, i-t elif i>n then else b(n-i, i, t+1); b(n, i+1, t) fi end; l:= NULL; b(n, 1, 0); l end: seq(T(n), n=1..10); # Alois P. Heinz, Dec 22 2011
-
Mathematica
T[n_] := Module[{b, l}, b[n0_, i_, t_] := If [n0==0, l = Append[l, i-t], If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]]; l = {}; b[n, 1, 0]; l]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Dec 22 2011
Comments