cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194558 G.f.: A(x) = exp( Sum_{n>=1} G_n(x)^n/n ) where G_n(x) = x + x*G_n(x)^n and A(x) = Sum_{n>=1} a(n)*x^n/floor(n/2)!.

Original entry on oeis.org

1, 1, 2, 3, 11, 15, 88, 115, 893, 1261, 12226, 16111, 221227, 282583, 4411016, 6248747, 113517609, 148484297, 3421012690, 4385030203, 110766993131, 153110987871, 4175683922312, 5442592336083, 179150412103621, 229026788618389, 7917824064488690
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2011

Keywords

Comments

This sequence is conjectured to consist entirely of integers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 11*x^4/2! + 15*x^5/2! + 88*x^6/3! + 115*x^7/3! + 893*x^8/4! + 1261*x^9/4! + 12226*x^10/5! + 16111*x^11/5! +...
The logarithm of the g.f. equals:
log(A(x)) = G_1(x) + G_2(x)^2/2 + G_3(x)^3/3 + G_4(x)^4/4 +...
where G_n(x) = x + x*G_n(x)^n is given by:
G_n(x) = Sum_{k>=0} C(n*k+1,k)/(n*k+1)*x^(n*k+1),
G_n(x)^n = Sum_{k>=1} C(n*k,k)/(n*k-k+1)*x^(n*k);
the first few expansions of G_n(x)^n begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 +...
G_2(x)^2 = x^2 + 2*x^4 + 5*x^6 + 14*x^8 +...+ A000108(n)*x^(2*n) +...
G_3(x)^3 = x^3 + 3*x^6 + 12*x^9 + 55*x^12 +...+ A001764(n)*x^(3*n) +...
G_4(x)^4 = x^4 + 4*x^8 + 22*x^12 + 140*x^16 +...+ A002293(n)*x^(4*n) +...
G_5(x)^5 = x^5 + 5*x^10 + 35*x^15 + 285*x^20 +...+ A002294(n)*x^(5*n) +...
		

Crossrefs

Cf. A194559.

Programs

  • PARI
    {a(n)=floor(n/2)!*polcoeff(exp(sum(m=1,n+1,serreverse(x/(1+x^m+x*O(x^n)))^m/m)),n)}

Formula

a(n) = floor(n/2)!/n! * A194559(n).
G.f.: A(x) = exp( Sum_{n>=1} Series_Reversion( x/(1+x^n) )^n/n ) where A(x) = Sum_{n>=1} a(n)*x^n/floor(n/2)!.