cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194581 Primes prime(k) of the form (2*prime(k-1) + prime(k+1))/3.

Original entry on oeis.org

3, 7, 13, 19, 43, 103, 109, 193, 229, 313, 349, 401, 463, 491, 509, 643, 743, 761, 823, 859, 883, 911, 997, 1093, 1237, 1279, 1303, 1429, 1459, 1483, 1489, 1499, 1571, 1609, 1637, 1831, 1873, 1999, 2003, 2069, 2083, 2221, 2239, 2243, 2251, 2269, 2273, 2399
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2011

Keywords

Comments

Primes prime(k) such that A062234(k) = A062234(k-1). - Thomas Ordowski, Jan 03 2016
Primes prime(k) such that A001223(k) = 2*A001223(k-1). - Robert Israel, Jan 03 2016
Or, primes which are at 1/3 of the distance between the previous and next prime. See A267291 for primes which are at 2/3 between their neighbors. - M. F. Hasler, Jan 12 2016

Examples

			a(1)=3 (=(2*2+5)/3), a(2)=7 (=(2*5+11)/3), a(3)=13 (=(2*11+17)/3).
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime, [2,seq(i,i=3..10^4,2)]):
    Gaps:= Primes[2..-1]-Primes[1..-2]:
    Primes[select(t -> 2*Gaps[t-1] = Gaps[t],[$2..nops(Gaps)])]; # Robert Israel, Jan 03 2016
  • Mathematica
    Table[(2 Prime[k - 1] + Prime[k + 1])/3, {k, 2, 360}] /. {Rational -> Nothing, n /; CompositeQ@ n -> Nothing} (* Michael De Vlieger, Jan 09 2016 *)
  • PARI
    for(k=2, 1000, q=2*prime(k-1)+prime(k+1); if(q%3==0 && isprime(q\3), print1(q\3, ", "))) \\ Colin Barker, Jun 27 2014
    
  • PARI
    A194581(n,show=0,o=2,g=0)={forprime(p=o+1,,g*2==(g=-o+o=p)||next; show&&print1(p-g",");n--||return(p-g))} \\ 2nd & 3rd optional args allow printing the whole list and using another starting value. - M. F. Hasler, Jan 12 2016

Extensions

Entries corrected by R. J. Mathar, Sep 30 2011