A194582 Triangle T(n,k), read by rows, given by (0, 3, -7/3, -2/21, 3/7, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 0, 1, 0, 3, 1, 0, 2, 6, 1, 0, 2, 13, 9, 1, 0, 2, 16, 33, 12, 1, 0, 2, 20, 69, 62, 15, 1, 0, 2, 24, 108, 188, 100, 18, 1, 0, 2, 28, 156, 401, 400, 147, 21, 1, 0, 2, 32, 212, 704, 1115, 732, 203, 24, 1, 0, 2, 36, 276, 1120, 2433, 2547, 1211, 268, 27, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 3, 1; 0, 2, 6, 1; 0, 2, 13, 9, 1; 0, 2, 16, 33, 12, 1; 0, 2, 20, 69, 62, 15, 1; 0, 2, 24, 108, 188, 100, 18, 1; 0, 2, 28, 156, 401, 400, 147, 21, 1; T(3, 2) = 6 enumerates the pairs of Fibonacci bit string of length 3 with 2 matching 1 bits: (101, 101), (101, 111), (110, 110), (110, 111), (111, 101), (111, 110). - _Michael Somos_, Feb 28 2020
Links
- Indranil Ghosh, Rows 0..100, flattened
Programs
-
Mathematica
nmax=10; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - x)/(1 - x - x*y - 2*x^2*y + x^3*y) , {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017, after R. J. Mathar *)
-
PARI
T(n,k) = if(n==k, 1, if(k==0, 0, if(n>1 && k==n - 1, 3*k, T(n - 1, k) + T(n - 1,k - 1) + 2*T(n - 2,k - 1) - T(n-3,k-1)))); {for(n=0, 10, for(k=0, n, print1(T(n,k),", ");); print();); } \\ Indranil Ghosh, Mar 10 2017
Formula
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1) - T(n-3,k-1).
G.f.: (1-x)/(1-x-x*y-2*x^2*y+x^3*y). - R. J. Mathar, Aug 11 2015
Comments