cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194584 Differences of A035336.

Original entry on oeis.org

5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3
Offset: 1

Views

Author

John W. Layman, Aug 29 2011

Keywords

Comments

It appears that this is the Fibonacci word A003849, using 5's and 3's instead of 0's and 1's. In other words, {a(n)} is a fixed point of the morphism 5->53, 3->5.
Proof of this conjecture: since A035336(n) = (2*floor(n*phi) + n - 1) (with phi = (1+sqrt(5))/2) is a generalized Beatty sequence, this follows from Lemma 4 in Allouche and Dekking. - Michel Dekking, Oct 10 2018
Also differences of A089910. - Bob Selcoe, Sep 20 2014
Proof of this conjecture: this follows from the Carlitz-Scoville-Hoggatt theorem: compositions of the Wythoff A and B sequences are generalized Beatty sequences (cf. Theorem 1 in Allouche and Dekking). - Michel Dekking, Oct 10 2018

Crossrefs

Programs

  • Mathematica
    Table[2 Floor[n (1 + Sqrt[5])/2] + n - 1, {n, 1, 100}] // Differences (* Jean-François Alcover, Dec 14 2018 *)