A194604 Square table T(n, d) read by antidiagonals: number of ways to place 2 nonattacking kings on an n^d (n X n X ...) raumschach board (hypercubical chessboard).
0, 0, 0, 1, 0, 0, 3, 16, 0, 0, 6, 78, 193, 0, 0, 10, 228, 1548, 2080, 0, 0, 15, 520, 6714, 27768, 21121, 0, 0, 21, 1020, 21280, 181032, 474288, 206896, 0, 0, 28, 1806, 55395, 807040, 4697166, 7888608, 1979713, 0, 0, 36, 2968, 125748, 2817240, 29708800
Offset: 1
Examples
The table begins: 0 0 0 0 0 ... 0 0 0 0 0 ... 1 16 193 2080 21121 ... 3 78 1548 27768 474288 ... 6 228 6714 181032 4697166 ... There are T(3, 4) = 2080 ways to place 2 nonattacking kings on a 3^4 (3 X 3 X 3 X 3) hypercubical chessboard. The antidiagonals are read from southwest to northeast.
Formula
T(n, d) = (n^(2d) - (3n-2)^d) / 2 for n>0, d>0.