A194608 Smallest prime either of the form prime(n)*2^k - 1 or prime(n)*2^k + 1, k >= 0, or 0 if no such prime exists, where prime(n) denotes the n-th prime number.
3, 2, 11, 13, 23, 53, 67, 37, 47, 59, 61, 73, 83, 173, 751, 107, 1889, 487, 269, 283, 293, 157, 167, 179, 193, 809, 823, 857, 6977, 227, 509, 263, 547, 277, 1193, 2417, 313, 653, 2671, 347, 359, 1447, 383, 773, 787, 397, 421, 1783, 907, 457, 467, 479, 493567
Offset: 1
Keywords
Examples
For n=4, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(4)=13.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[p = Prime[n]; k = 0; While[! PrimeQ[a = p*2^k - 1] && ! PrimeQ[a = p*2^k + 1], k++]; a, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
Comments