A194621 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n in which any two parts differ by at most k.
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 2, 5, 6, 7, 7, 7, 4, 6, 9, 10, 11, 11, 11, 2, 7, 10, 13, 14, 15, 15, 15, 4, 8, 14, 17, 20, 21, 22, 22, 22, 3, 9, 15, 22, 25, 28, 29, 30, 30, 30, 4, 10, 20, 27, 34, 37, 40, 41, 42, 42, 42, 2, 11, 21, 33, 41, 48, 51, 54, 55, 56, 56, 56
Offset: 0
Examples
T(6,0) = 4: [6], [3,3], [2,2,2], [1,1,1,1,1,1]. T(6,1) = 6: [6], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1]. T(6,2) = 9: [6], [4,2], [3,1,1,1], [3,2,1], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1]. Triangle begins: 1; 1, 1; 2, 2, 2; 2, 3, 3, 3; 3, 4, 5, 5, 5; 2, 5, 6, 7, 7, 7; 4, 6, 9, 10, 11, 11, 11; 2, 7, 10, 13, 14, 15, 15, 15;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; if n<0 or k<0 then 0 elif n=0 then 1 elif i<1 then 0 else b(n, i-1, k-1) +b(n-i, i, k) fi end: T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n): seq(seq(T(n, k), k=0..n), n=0..20);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, k-1] + b[n-i, i, k]]]]; t[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
Formula
G.f. of column k: 1 + Sum_{j>0} x^j / Product_{i=0..k} (1-x^(i+j)).
Comments