cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194621 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n in which any two parts differ by at most k.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 2, 5, 6, 7, 7, 7, 4, 6, 9, 10, 11, 11, 11, 2, 7, 10, 13, 14, 15, 15, 15, 4, 8, 14, 17, 20, 21, 22, 22, 22, 3, 9, 15, 22, 25, 28, 29, 30, 30, 30, 4, 10, 20, 27, 34, 37, 40, 41, 42, 42, 42, 2, 11, 21, 33, 41, 48, 51, 54, 55, 56, 56, 56
Offset: 0

Views

Author

Alois P. Heinz, Aug 30 2011

Keywords

Comments

T(n,k) = A000041(n) for n >= 0 and k >= n.

Examples

			T(6,0) = 4: [6], [3,3], [2,2,2], [1,1,1,1,1,1].
T(6,1) = 6: [6], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
T(6,2) = 9: [6], [4,2], [3,1,1,1], [3,2,1], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
Triangle begins:
  1;
  1, 1;
  2, 2,  2;
  2, 3,  3,  3;
  3, 4,  5,  5,  5;
  2, 5,  6,  7,  7,  7;
  4, 6,  9, 10, 11, 11, 11;
  2, 7, 10, 13, 14, 15, 15, 15;
		

Crossrefs

Columns k=0-10 give (for n>0): A000005, A000027, A117142, A117143, A218506, A218507, A218508, A218509, A218510, A218511, A218512.
Main diagonal gives: A000041.

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          if n<0 or k<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-1, k-1) +b(n-i, i, k)
          fi
        end:
    T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n):
    seq(seq(T(n, k), k=0..n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, k-1] + b[n-i, i, k]]]]; t[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)

Formula

G.f. of column k: 1 + Sum_{j>0} x^j / Product_{i=0..k} (1-x^(i+j)).