cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194634 Numbers n such that k= n^2 + n + 41 is composite and there is no integer x such that n= x^2 + 40; n= (x^2+x)/2 + 81; or n= 3*x^2 - 2x + 122.

Original entry on oeis.org

127, 138, 155, 163, 164, 170, 173, 178, 185, 190, 204, 205, 207, 208, 213, 215, 216, 232, 237, 239, 242, 244, 245, 246, 248, 249, 251, 256, 259, 261, 266, 268, 270, 278, 279, 283, 284, 286, 287, 289, 295, 299, 300, 301, 302, 309, 314, 321, 325, 326, 327, 328
Offset: 1

Views

Author

Matt C. Anderson, Aug 30 2011

Keywords

Comments

The parabola curve fit: p1(0)=40; p1(1)=41; p1(2)=44 yields p1(x)=x^2+40. A second fit: p2(0)=81; p2(1)=82; p2(2)=84 yields p2(x)=(x^2+x)/2 + 81. A third fit: p3(0)=122; p3(1)=123; p3(2)=130 yields p3(x)=3x^2-2*x+122.
Substituting n=x^2 into k=n^2+n+41 is factorable as: k1=(x^2+x+41)*(x^2-x+41). This shows that all lattice points on p1 produce a composite k.
Similarly, substituting n=(x^2-x)/2 + 81 into k factors as k2=(x^2+163)*(x^2+2*x+164)/4. So all lattice points on p2 produce a composite k.
Similarly, substituting n=3*x^2-2*x+122 into k factors as k3=(x^2-x+41)*(9*x^2-3*x+367). So all lattice points on p3 produce a composite k.
This procedure can be continued with p4(x)=3*x^2+8*x+127, p5(x)=4*x^2-3*x+163, p6(x)=4*x^2+11*x+170, p7(x)=5*x^2-4*x+204, p8(x)=5*x^2+14*x+213, p9(x)=(3*x^2-x)/2+244, p10(x)=(3*x^2+7*x)/2+246, and so on.

References

  • John Stillwell, Elements of Number Theory, Springer, 2003, page 3.
  • R. Crandall and C. Pomerance, Prime Numbers A Computational Perspective 2nd ed., Springer, 2005, page 21.

Crossrefs

Cf. A007634 (n such that n^2+n+41 is composite).
Cf. A055390 (members of A007634 that are not lattice points of x^2+40).
Cf. A194565 (members of A055390 that are not lattice points of (x^2+x)/2 + 81).

Programs

  • Maple
    A007634:={}:
    for n from 1 to 1000 do
    k:=n^2+n+41:
    if isprime(k)=false then
    A007634:=A007634 union {n}:
    end if:
    end do:
    pv1:=Vector(1000,j->(j-1)^2+40):
    p1:=convert(pv1,set):
    A055390:=A007634 minus p1 minus {0}:
    pv2:=Vector(1000,j->((j-1)^2+(j-1))/2+81):
    p2:=convert(pv2,set):
    A194565:=A055390 minus p2:
    pv3:=Vector(1000,j->(3*(j-1)^2-2*(j-1)+122)):
    p3:=convert(pv3,set):
    p3set:=A194565 minus p3;
  • PARI
    is(n)=!isprime(n^2+n+41) && !issquare(n-40) && !issquare(8*n-647) && n > 126 && (x->3*x^2-2*x+122)(round((1+sqrt(3*n-365))/3))!=n \\ Charles R Greathouse IV, Apr 25 2014

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014

Extensions

Fixed subscripts in first comment. Added * in 4th comment. Added 5th comment. Changed g to k for consistancy. Improved Maple code. Added second book reference. Changed name to agree with comment of editor.