A194634 Numbers n such that k= n^2 + n + 41 is composite and there is no integer x such that n= x^2 + 40; n= (x^2+x)/2 + 81; or n= 3*x^2 - 2x + 122.
127, 138, 155, 163, 164, 170, 173, 178, 185, 190, 204, 205, 207, 208, 213, 215, 216, 232, 237, 239, 242, 244, 245, 246, 248, 249, 251, 256, 259, 261, 266, 268, 270, 278, 279, 283, 284, 286, 287, 289, 295, 299, 300, 301, 302, 309, 314, 321, 325, 326, 327, 328
Offset: 1
References
- John Stillwell, Elements of Number Theory, Springer, 2003, page 3.
- R. Crandall and C. Pomerance, Prime Numbers A Computational Perspective 2nd ed., Springer, 2005, page 21.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
Crossrefs
Programs
-
Maple
A007634:={}: for n from 1 to 1000 do k:=n^2+n+41: if isprime(k)=false then A007634:=A007634 union {n}: end if: end do: pv1:=Vector(1000,j->(j-1)^2+40): p1:=convert(pv1,set): A055390:=A007634 minus p1 minus {0}: pv2:=Vector(1000,j->((j-1)^2+(j-1))/2+81): p2:=convert(pv2,set): A194565:=A055390 minus p2: pv3:=Vector(1000,j->(3*(j-1)^2-2*(j-1)+122)): p3:=convert(pv3,set): p3set:=A194565 minus p3;
-
PARI
is(n)=!isprime(n^2+n+41) && !issquare(n-40) && !issquare(8*n-647) && n > 126 && (x->3*x^2-2*x+122)(round((1+sqrt(3*n-365))/3))!=n \\ Charles R Greathouse IV, Apr 25 2014
Formula
a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014
Extensions
Fixed subscripts in first comment. Added * in 4th comment. Added 5th comment. Changed g to k for consistancy. Improved Maple code. Added second book reference. Changed name to agree with comment of editor.
Comments