A194638 Smallest prime either of the form (2*n-1)*2^k - 1 or (2*n-1)*2^k + 1, k >= 0, or 0 if no such prime exists.
2, 2, 11, 13, 17, 23, 53, 29, 67, 37, 41, 47, 101, 53, 59, 61, 67, 71, 73, 79, 83, 173, 89, 751, 97, 101, 107, 109, 113, 1889, 487, 127, 131, 269, 137, 283, 293, 149, 307, 157, 163, 167, 1361, 173, 179, 181, 373, 191, 193, 197, 809, 823, 211, 857, 6977, 223, 227
Offset: 1
Keywords
Examples
For n=4, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(4)=13.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[n = 2*n - 1; k = 0; While[! PrimeQ[a = n*2^k - 1] && ! PrimeQ[a = n*2^k + 1], k++]; a, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
Comments