cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194644 Number of ways to place 2n nonattacking kings on a 4 X 2n cylindrical chessboard.

Original entry on oeis.org

12, 32, 90, 256, 732, 2102, 6060, 17536, 50922, 148352, 433500, 1270246, 3731532, 10987232, 32418810, 95835136, 283784412, 841611542, 2499330540, 7431221056, 22118855562, 65898914432, 196498594140, 586358987206, 1750864725132, 5231094261152, 15636995277210
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 4, number of rows = 2n).

Crossrefs

Programs

  • Mathematica
    Table[2*3^n+2*LucasL[2n], {n,25}]
    Drop[CoefficientList[Series[-2*(3 - 12*x + 10*x^2)/((-1 + 3*x)*(1 - 3*x + x^2)), {x, 0, 27}],x], 1] (* or *) LinearRecurrence[{6,-10,3},{12,32,90},27] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    print(Vec(-2*(3 - 12*x + 10*x^2)/((-1 + 3*x)*(1 - 3*x + x^2)) + O(x^27))); \\ Indranil Ghosh, Mar 05 2017

Formula

a(n) = 2*3^n + 2*((3+sqrt(5))/2)^n + 2*((3-sqrt(5))/2)^n.
Recurrence: a(n) = 3*a(n-3) - 10*a(n-2) + 6*a(n-1).
G.f.: -2*(3-12*x+10*x^2)/((-1+3*x)*(1-3*x+x^2)).