A194644 Number of ways to place 2n nonattacking kings on a 4 X 2n cylindrical chessboard.
12, 32, 90, 256, 732, 2102, 6060, 17536, 50922, 148352, 433500, 1270246, 3731532, 10987232, 32418810, 95835136, 283784412, 841611542, 2499330540, 7431221056, 22118855562, 65898914432, 196498594140, 586358987206, 1750864725132, 5231094261152, 15636995277210
Offset: 1
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..2091
- V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights
- Index entries for linear recurrences with constant coefficients, signature (6,-10,3).
Programs
-
Mathematica
Table[2*3^n+2*LucasL[2n], {n,25}] Drop[CoefficientList[Series[-2*(3 - 12*x + 10*x^2)/((-1 + 3*x)*(1 - 3*x + x^2)), {x, 0, 27}],x], 1] (* or *) LinearRecurrence[{6,-10,3},{12,32,90},27] (* Indranil Ghosh, Mar 05 2017 *)
-
PARI
print(Vec(-2*(3 - 12*x + 10*x^2)/((-1 + 3*x)*(1 - 3*x + x^2)) + O(x^27))); \\ Indranil Ghosh, Mar 05 2017
Formula
a(n) = 2*3^n + 2*((3+sqrt(5))/2)^n + 2*((3-sqrt(5))/2)^n.
Recurrence: a(n) = 3*a(n-3) - 10*a(n-2) + 6*a(n-1).
G.f.: -2*(3-12*x+10*x^2)/((-1+3*x)*(1-3*x+x^2)).
Comments