cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A194645 Number of ways to place 3n nonattacking kings on a 6 X 2n cylindrical chessboard.

Original entry on oeis.org

32, 100, 344, 1220, 4392, 15988, 58776, 218052, 815816, 3076180, 11682296, 44653028, 171670440, 663421684, 2575592664, 10039703172, 39273896840, 154109956756, 606353229752, 2391296071460, 9449664931176, 37407140524084, 148300497571992, 588693691298244
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 6, number of rows = 2n).

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[2*4^n+2*3^n+4*(2+Sqrt[2])^n+4*(2-Sqrt[2])^n+2], {n,25}]
    LinearRecurrence[{12,-53,104,-86,24},{32,100,344,1220,4392},30] (* Harvey P. Dale, Jul 25 2016 *)

Formula

a(n) = 2*4^n + 2*3^n + 4*(2+sqrt(2))^n + 4*(2-sqrt(2))^n + 2.
Recurrence: a(n) = 24*a(n-5) - 86*a(n-4) + 104*a(n-3) - 53*a(n-2) + 12*a(n-1).
G.f.: -2*(7-68*x+229*x^2-308*x^3+134*x^4)/((-1+x)*(-1+3*x)*(-1+4*x)*(1-4*x+2*x^2)).

A194646 Number of ways to place 4n nonattacking kings on an 8 X 2n cylindrical chessboard.

Original entry on oeis.org

80, 276, 1082, 4460, 18890, 81606, 358564, 1599820, 7238864, 33175486, 153802520, 720390254, 3404944506, 16221905696, 77820675992, 375564803020, 1821845982082, 8876847931644, 43416046650306, 213033152875350, 1048198981050148, 5169676077206180
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 8, number of rows = 2n).

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[4+2*5^n+2*4^n + 2*(2+Sqrt[3])^n + 2*(2-Sqrt[3])^n+ 4*((5+Sqrt[5])/2)^n + 4*((5-Sqrt[5])/2)^n + 4*((5+Sqrt[13])/2)^n+4*((5-Sqrt[13])/2)^n+ 2*(2*Cos[Pi/7])^(2n) + 2*(2*Cos[2*Pi/7])^(2n) + 2*(2*Cos[3*Pi/7])^(2n)], {n,10}]

Formula

a(n) = 4 + 2*5^n + 2*4^n + 2*(2+sqrt(3))^n+2*(2-sqrt(3))^n + 4*((5+sqrt(5))/2)^n+4*((5-sqrt(5))/2)^n + 4*((5+sqrt(13))/2)^n+4*((5-sqrt(13))/2)^n + 2*(2*cos(Pi/7))^(2n)+2*(2*cos(2*Pi/7))^(2n)+2*(2*cos(3*Pi/7))^(2n).
Recurrence: a(n) = -300*a(n-12) + 4235*a(n-11) - 23320*a(n-10) + 66422*a(n-9) - 111545*a(n-8) + 118727*a(n-7) - 83449*a(n-6) + 39539*a(n-5) - 12676*a(n-4) + 2708*a(n-3) - 369*a(n-2) + 29*a(n-1).
G.f.: -2*(-17 + 453*x - 5251*x^2 + 34737*x^3 - 144635*x^4 + 394423*x^5 - 711101*x^6 + 836705*x^7 - 620007*x^8 + 270365*x^9 - 61055*x^10 + 5335*x^11)/((-1+x)*(-1+4*x)*(-1+5*x)*(1-4*x+x^2)*(1-5*x+3*x^2)*(1-5*x+5*x^2)*(-1+5*x-6*x^2+x^3)).

A194647 Number of ways to place 5n nonattacking kings on a 10 X 2n cylindrical chessboard.

Original entry on oeis.org

192, 708, 3036, 13932, 66532, 327192, 1649420, 8500668, 44693472, 239238888, 1301236304, 7177627944, 40078823652, 226167613792, 1287874058656, 7390391650172, 42688584938548, 247956702607932, 1447080255512308, 8479116559291112, 49852445684576540
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 10, number of rows = 2n).

Crossrefs

Formula

G.f.: -2*(7089408*x^21 - 132938496*x^20 + 1125112128*x^19 - 5717239392*x^18 + 19578445344*x^17 - 48082847384*x^16 + 88003026752*x^15 - 123138008952*x^14 + 134072006560*x^13 - 114991853490*x^12 + 78336556962*x^11 - 42596878318*x^10 + 18524447581*x^9 - 6435525481*x^8 + 1778018953*x^7 - 387290192*x^6 + 65568715*x^5 - 8436954*x^4 + 796245*x^3 - 51918*x^2 + 2088*x - 39)/((x-1)*(2*x-1)*(4*x-1)*(6*x-1)*(x^2-4*x+1)*(2*x^2-5*x+1)*(2*x^2-4*x+1)*(4*x^2-6*x+1)*(6*x^2-6*x+1)*(7*x^2-6*x+1)*(2*x^3-8*x^2+6*x-1)*(3*x^3-9*x^2+6*x-1)).
Asymptotic: a(n) ~ 2*6^n.

A194648 Number of ways to place 6n nonattacking kings on a 12 X 2n cylindrical chessboard.

Original entry on oeis.org

448, 1732, 7918, 39316, 205628, 1118398, 6286658, 36383284, 216134044, 1314160492, 8155899320, 51526819510, 330559583178, 2148524237842, 14120142260138, 93669254201140, 626289974615094, 4215364545901036, 28531464984810918, 194028126730583796
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 12, number of rows = 2n).

Crossrefs

Formula

Asymptotic: a(n) ~ 2*7^n.

A195004 Number of ways to place 7n nonattacking kings on a 14 X 2n cylindrical chessboard.

Original entry on oeis.org

1024, 4100, 19648, 103508, 580664, 3419648, 20984924, 133538996, 877751236, 5937279840, 41180193352, 291859775552, 2106967145904, 15448890481568, 114765555945488, 861942483797204, 6533144250310688, 49899718750389380, 383593821097441412, 2964842429047018248
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 07 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 14, number of rows = 2n).

Crossrefs

A195590 Number of ways to place 2n nonattacking kings on a vertical cylinder 4 X 2n.

Original entry on oeis.org

8, 32, 100, 276, 708, 1732, 4100, 9476, 21508, 48132, 106500, 233476, 507908, 1097732, 2359300, 5046276, 10747908, 22806532, 48234500, 101711876, 213909508, 448790532, 939524100, 1962934276, 4093640708, 8522825732, 17716740100, 36775657476, 76235669508
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 21 2011

Keywords

Comments

Vertical cylinder: a chessboard where it is supposed that the columns 1 and 4 are in contact (number of columns = 4, number of rows = 2n).

Crossrefs

Formula

Recurrence: a(n) = 4*a(n-3) - 8*a(n-2) + 5*a(n-1).
G.f.: -(1+3*x)/((x-1)*(2*x-1)^2).
Explicit formula: a(n) = (5*n-3)*2^n + 4.

A195642 Number of lower triangles of an n X n 0..6 array with all row sums equal to the length of the row and all column sums equal to the length of the column.

Original entry on oeis.org

1, 1, 3, 19, 391, 25532, 5539434, 4116036800, 10694128575819, 98630958757213465, 3267417937114919996252
Offset: 1

Views

Author

R. H. Hardin Sep 21 2011

Keywords

Comments

Column 6 of A194644

Examples

			Some solutions for n=6
..1............1............1............1............1............1
..1.1..........1.1..........0.2..........2.0..........0.2..........2.0
..2.1.0........2.1.0........2.1.0........2.1.0........2.1.0........2.1.0
..2.0.0.2......1.2.1.0......0.0.3.1......0.2.1.1......0.1.3.0......0.3.1.0
..0.0.2.1.2....1.0.2.0.2....1.0.1.1.2....0.1.2.2.0....1.0.1.1.2....1.0.2.1.1
..0.3.2.0.0.1..0.1.1.3.0.1..2.2.0.1.0.1..1.1.1.0.2.1..2.1.0.2.0.1..0.1.1.2.1.1
		

A195643 Number of lower triangles of an n X n 0..7 array with all row sums equal to the length of the row and all column sums equal to the length of the column.

Original entry on oeis.org

1, 1, 3, 19, 391, 25532, 5539434, 4116290300, 10699674783969, 98827025484631957, 3284291571314714878300
Offset: 1

Views

Author

R. H. Hardin Sep 21 2011

Keywords

Comments

Column 7 of A194644

Examples

			Some solutions for n=7
..1..............1..............1..............1..............1
..1.1............0.2............2.0............2.0............2.0
..0.3.0..........0.3.0..........3.0.0..........2.1.0..........2.1.0
..4.0.0.0........2.1.1.0........0.2.2.0........1.3.0.0........2.2.0.0
..0.2.2.0.1......2.0.1.1.1......1.1.2.0.1......1.2.2.0.0......0.1.0.3.1
..1.0.1.0.2.2....2.0.2.0.2.0....0.3.0.1.2.0....0.0.2.4.0.0....0.1.4.0.1.0
..0.0.2.4.0.0.1..0.0.1.3.0.2.1..0.0.1.3.0.2.1..0.0.1.0.3.2.1..0.1.1.1.1.2.1
		
Showing 1-8 of 8 results.