cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A194648 Number of ways to place 6n nonattacking kings on a 12 X 2n cylindrical chessboard.

Original entry on oeis.org

448, 1732, 7918, 39316, 205628, 1118398, 6286658, 36383284, 216134044, 1314160492, 8155899320, 51526819510, 330559583178, 2148524237842, 14120142260138, 93669254201140, 626289974615094, 4215364545901036, 28531464984810918, 194028126730583796
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 12, number of rows = 2n).

Crossrefs

Formula

Asymptotic: a(n) ~ 2*7^n.

A195004 Number of ways to place 7n nonattacking kings on a 14 X 2n cylindrical chessboard.

Original entry on oeis.org

1024, 4100, 19648, 103508, 580664, 3419648, 20984924, 133538996, 877751236, 5937279840, 41180193352, 291859775552, 2106967145904, 15448890481568, 114765555945488, 861942483797204, 6533144250310688, 49899718750389380, 383593821097441412, 2964842429047018248
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 07 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 14, number of rows = 2n).

Crossrefs

A195593 Number of ways to place 5n nonattacking kings on a vertical cylinder 10 X 2n.

Original entry on oeis.org

64, 732, 4392, 18890, 66532, 205628, 580664, 1536814, 3877300, 9434784, 22327496, 51698178, 117645348, 263992580, 585640568, 1286898262, 2805399156, 6074441896, 13076687560, 28009586346, 59732295204, 126891641612, 268638308152, 566987715710
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 21 2011

Keywords

Comments

Vertical cylinder: a chessboard where it is supposed that the columns 1 and 10 are in contact (number of columns = 10, number of rows = 2n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8, -26, 44, -41, 20, -4}, {64, 732, 4392, 18890, 66532, 205628}, 20] (* Jinyuan Wang, Feb 26 2020 *)

Formula

a(n) = -4*a(n-6) + 20*a(n-5) - 41*a(n-4) + 44*a(n-3) - 26*a(n-2) + 8*a(n-1).
G.f.: (1 + 56*x + 246*x^2 + 156*x^3 + 11*x^4)/((x-1)^4*(2*x-1)^2).
a(n) = (1771*n - 8709)*2^n + 235/3*n^3 + 880*n^2 + 12815/3*n + 8710.
Showing 1-3 of 3 results.