cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194656 Decimal expansion of (2*Pi^5*log(2) - 30*Pi^3*zeta(3) + 225*Pi*zeta(5))/320.

Original entry on oeis.org

1, 2, 2, 0, 4, 7, 2, 9, 5, 8, 8, 5, 9, 2, 8, 7, 2, 1, 6, 3, 3, 2, 6, 0, 2, 9, 6, 2, 8, 2, 2, 9, 5, 2, 8, 8, 1, 4, 4, 5, 6, 8, 7, 2, 0, 5, 0, 5, 6, 9, 2, 4, 2, 8, 1, 5, 5, 4, 3, 8, 5, 7, 9, 2, 6, 4, 2, 7, 6, 2, 1, 5, 6, 7, 7, 7, 9, 5, 5, 8, 6, 5, 2, 1, 0, 9, 1, 3, 5, 3, 0, 9, 5, 5, 0, 4, 5, 5, 8, 2, 8, 0, 9, 3, 5
Offset: 0

Views

Author

Seiichi Kirikami, Sep 01 2011

Keywords

Comments

The absolute value of the integral{x=0..Pi/2} x^4*log(sin(x )) dx or(d^4/da^4(integral {x=0..Pi/2} cos(ax)*log(sin(x )) dx)) at a=0. The absolute value of m=2 of (-1)^(m+1)*(sum {n=1..infinity} (limit {a -> 0} (d^(2m)/da^(2m)(sin((a+2n)*Pi/2)/n/(a+2n)))))-(Pi/2)^(2m+1)*log(2)/(2m+1). - Seiichi Kirikami and Peter J. C. Moses, Sep 01 2011

Examples

			0.12204729588592872163...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 1.441.2

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[Pi (2 Pi^4*Log[2]-30 Pi^2*Zeta[3]+225 Zeta[5])/320, 150]][[1]]

Formula

Equals (2*A092731*A002162-30*A091925*A002117+225*A000796*A013663)/320.