A194658 a(n) is the maximal prime, such that for all primes x<=a(n) the number of primes in (x/2,x) is less than n.
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 137, 151, 167, 179, 181, 191, 197, 233, 239, 241, 263, 269, 281, 283, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 521, 571, 587, 593, 599, 601, 607, 617, 643, 647, 653
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- V. Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
Programs
-
Mathematica
b[1] = 2; b[n_] := b[n] = Module[{x = b[n-1]}, While[PrimePi[x] - PrimePi[ Quotient[x, 2]] != n, x++]; x]; a[n_] := NextPrime[b[n+1], -1]; Array[a, 100] (* Jean-François Alcover, Nov 11 2018 *)
Comments