A206225
Numbers j such that the numbers Phi(j, m) are in sorted order for any integer m >= 2, where Phi(k, x) is the k-th cyclotomic polynomial.
Original entry on oeis.org
1, 2, 6, 4, 3, 10, 12, 8, 5, 14, 18, 9, 7, 15, 20, 24, 16, 30, 22, 11, 21, 26, 28, 36, 42, 13, 34, 40, 48, 32, 60, 17, 38, 54, 27, 19, 33, 44, 50, 25, 66, 46, 23, 35, 39, 52, 45, 56, 72, 90, 84, 78, 70, 58, 29, 62, 31, 51, 68, 80, 96, 64, 120
Offset: 1
For k such that A000010(k) = 1,
Phi(1,m) = -1 + m,
Phi(2,m) = 1 + m,
Phi(1,m) < Phi(2,m),
so, a(1)=1, a(2)=2.
For k > 2 such that A000010(k) = 2,
Phi(3,m) = 1 + m + m^2,
Phi(4,m) = 1 + m^2,
Phi(6,m) = 1 - m + m^2.
For m > 1, Phi(6,m) < Phi(4,m) < Phi(3,m), so a(3)=6, a(4)=4, and a(5)=3 (noting that Phi(6,m) > Phi(2,m) when m > 2, and Phi(6,2) = Phi(2,2)).
For k such that A000010(k) = 4,
Phi(5,m) = 1 + m + m^2 + m^3 + m^4,
Phi(8,m) = 1 + m^4,
Phi(10,m) = 1 - m + m^2 - m^3 + m^4,
Phi(12,m) = 1 - m^2 + m^4.
For m > 1, Phi(10,m) < Phi(12,m) < Phi(8,m) < Phi(5,m), so a(6) = 10, a(7) = 12, a(8) = 8, and a(9) = 5 (noting Phi(10,m) - Phi(3,m) = m((m^2 + m + 2)(m - 2) + 2) >= 4 > 0 when m >= 2).
A206942
Numbers of the form Phi_k(m) with k > 2 and |m| > 1.
Original entry on oeis.org
3, 5, 7, 10, 11, 13, 17, 21, 26, 31, 37, 43, 50, 57, 61, 65, 73, 82, 91, 101, 111, 121, 122, 127, 133, 145, 151, 157, 170, 183, 197, 205, 211, 226, 241, 257, 273, 290, 307, 325, 331, 341, 343, 362, 381, 401, 421, 442, 463, 485, 507, 521, 530, 547, 553
Offset: 1
a(1) = 3 = Phi_6(2) = Cyclotomic(6,2).
a(2) = 5 = Phi_4(2) = Cyclotomic(4,2).
...
a(15) = 61 = Phi_5(-3) = Cyclotomic(5,-3).
Cf.
A006511 for phiinv function in the Mathematica program.
-
using Nemo
function isA206942(n)
if n < 3 return false end
R, x = PolynomialRing(ZZ, "x")
K = Int(floor(5.383*log(n)^1.161)) # Bounds from
M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt
for k in 3:K
c = cyclotomic(k, x)
for m in 2:M
n == subst(c, m) && return true
end
end
return false
end
L = [n for n in 1:553 if isA206942(n)]; print(L) # Peter Luschny, Feb 21 2018
-
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 560; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], EulerPhi[#] <= eb &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]
(* Alternatively: *)
isA206942[n_] := If[n < 3, Return[False],
K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]];
For[k = 3, k <= K, k++, For[x = 2, x <= M, x++,
If[n == Cyclotomic[k, x], Return[True]]]];
Return[False]
]; Select[Range[555], isA206942] (* Peter Luschny, Feb 21 2018 *)
A206292
Numbers k such that cyclotomic polynomial Phi(k,-m) < Phi(j,-m) for any j > k and m >= 2.
Original entry on oeis.org
1, 2, 3, 4, 6, 12, 18, 30, 42, 48, 60, 66, 70, 78, 90, 102, 120, 126, 150, 180, 210, 240, 270, 300, 330, 420, 450, 462, 480, 510, 540, 630, 660, 690, 780, 840, 870, 924, 1050, 1092, 1140, 1260, 1320, 1470, 1560, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990
Offset: 1
For k such that A000010(k) = 1:
Phi(1, -m) = -1 - m,
Phi(2, -m) = 1 - m,
Phi(1, -m) < Phi(2, -m),
so a(1) = 1, a(2) = 2.
For k > 2 such that A000010(k) = 2:
Phi(3, -m) = 1 - m + m^2,
Phi(4, -m) = 1 + m^2,
Phi(6, -m) = 1 + m + m^2.
When integer m > 1, Phi(3, -m) < Phi(4, -m) < Phi(6, -m), so a(3) = 3, a(4) = 4, and a(5) = 6.
For k > 6 such that A000010(k) = 4:
Phi(8, -m) = 1 + m^4,
Phi(10, -m) = 1 + m + m^2 + m^3 + m^4,
Phi(12, -m) = 1 - m^2 + m^4.
When integer m > 1, Phi(12, -m) < Phi(8, -m) < Phi(10, -m), so a(6) = 12.
-
t = Select[Range[4000], EulerPhi[#] <= 1000 &]; t = SortBy[t, Cyclotomic[#, -2] &]; DeleteDuplicates[Table[Max[Take[t, n]], {n, 1, Length[t]}]]
A206710
This irregular table contains indices j, k, l,... in each row such that the values Phi(j,-m) < Phi(k,-m)< Phi(l,-m)< ... of cyclotomic polynomials Phi(.,.) are sorted given any constant integer argument m >= 2.
Original entry on oeis.org
1, 2, 3, 4, 6, 5, 12, 8, 10, 7, 9, 18, 14, 30, 20, 24, 16, 15, 11, 22, 42, 13, 28, 36, 21, 26, 17, 40, 48, 32, 60, 34, 19, 27, 54, 38, 66, 44, 25, 50, 33, 23, 46, 70, 78, 52, 90, 56, 72, 45, 84, 39, 35, 29, 58, 31, 62, 102, 68, 80, 96, 64, 120
Offset: 1
For those k's that make A000010(k) = 1
Phi(1,-m) = -1-m
Phi(2,-m) = 1-m
Phi(1,-m) < Phi(2,-m)
So, a(1) = 1, a(2) = 2;
For those k's (k > 2) that make A000010(k) = 2
Phi(3,-m) = 1 - m + m^2
Phi(4,-m) = 1 + m^2
Phi(6,-m) = 1 + m + m^2
Obviously when integer m > 1, Phi(3,m) < Phi(4,m) < Phi(6,m)
So a(3)=3, a(4)=4, and a(5)=6
For those k's that make A000010(k) = 4
Phi(5,-m) = 1 - m + m^2 - m^3 + m^4
Phi(8,-m) = 1 + m^4
Phi(10,-m) = 1 + m + m^2 + m^3 + m^4
Phi(12,-m) = 1 - m^2 + m^4
Obviously when integer m > 1, Phi(5,m) < Phi(12,m) < Phi(8,m) < Phi(10,m),
So a(6) = 5, a(7) = 12, a(8) = 8, and a(9) = 10.
The table starts
1,2;
3,4,6;
5,12,8,10;
A206944
Numbers Phi_k(m) with integer k > 2, |m| > 1 but k != 2^j (j > 1).
Original entry on oeis.org
3, 7, 11, 13, 21, 31, 43, 57, 61, 73, 91, 111, 121, 127, 133, 151, 157, 183, 205, 211, 241, 273, 307, 331, 341, 343, 381, 421, 463, 507, 521, 547, 553, 601, 651, 683, 703, 757, 781, 813, 871, 931, 993, 1057, 1093, 1111, 1123, 1191, 1261, 1333, 1407, 1483
Offset: 1
a(1) = 3 = Phi(6,2).
5 = Phi(4,2) = Phi(2,4) so excluded.
a(2) = 7 = Phi(3,2).
-
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 1500; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && ((! IntegerQ[Log[2, #]]) || (# <= 2))) &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata,
a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]
A206945
Prime numbers Phi(k,m) with integer k > 2, |m| > 1, and k != 2^j (j > 1).
Original entry on oeis.org
3, 7, 11, 13, 31, 43, 61, 73, 127, 151, 157, 211, 241, 307, 331, 421, 463, 521, 547, 601, 683, 757, 1093, 1123, 1483, 1723, 2551, 2731, 2801, 2971, 3307, 3541, 3907, 4423, 4561, 4831, 5113, 5419, 5701, 6007, 6163, 6481, 8011, 8191, 9091, 9901, 10303, 11131
Offset: 1
Just taking prime terms from A206944:
A206944(1)=3 is prime, so a(1)=3 ...
-
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 12000; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && ((! IntegerQ[Log[2, #]]) || (# <= 2))) &]; t = SortBy[t, Cyclotomic[#, 2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[t[[i]], m]; cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a]
Showing 1-6 of 6 results.
Comments