A194716 Number of n-ary words beginning with the first character of the alphabet, that can be built by inserting four doublets into the initially empty word.
0, 1, 35, 181, 523, 1145, 2131, 3565, 5531, 8113, 11395, 15461, 20395, 26281, 33203, 41245, 50491, 61025, 72931, 86293, 101195, 117721, 135955, 155981, 177883, 201745, 227651, 255685, 285931, 318473, 353395, 390781, 430715, 473281, 518563, 566645, 617611
Offset: 0
Keywords
Examples
a(2) = 35: aaaaaaaa, aaaaaabb, aaaaabba, aaaabaab, aaaabbaa, aaaabbbb, aaabaaba, aaabbaaa, aaabbabb, aaabbbba, aabaaaab, aabaabaa, aabaabbb, aababbab, aabbaaaa, aabbaabb, aabbabba, aabbbaab, aabbbbaa, aabbbbbb, abaaaaba, abaabaaa, abaababb, abaabbba, ababbaba, abbaaaaa, abbaaabb, abbaabba, abbabaab, abbabbaa, abbabbbb, abbbaaba, abbbbaaa, abbbbabb, abbbbbba (with 2-ary alphabet {a,b}).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Row n=4 of A183134.
Programs
-
Maple
a:= n-> `if`(n=0, 0, (x-> 1+(6+(14+14*x)*x)*x)(n-1)): seq(a(n), n=0..40);
Formula
G.f.: x*(1+31*x+47*x^2+5*x^3) / (x-1)^4.
a(0) = 0, a(n) = 1+(6+(14+14*(n-1))*(n-1))*(n-1) for n>0.