cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194725 Number of 5-ary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.

Original entry on oeis.org

1, 1, 9, 97, 1145, 14289, 185193, 2467137, 33563481, 464221105, 6507351113, 92236247841, 1319640776249, 19031570387857, 276368559434025, 4037555902072065, 59299855337012505, 875056238174271345, 12967283824008178185, 192889769468751321825, 2879117809973276680185
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2011

Keywords

Examples

			a(2) = 9: aaaa, aabb, aacc, aadd, aaee, abba, acca, adda, aeea (with 5-ary alphabet {a,b,c,d,e}).
		

Crossrefs

Column k=5 of A183134.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *4^j, j=0..n-1) /n):
    seq(a(n), n=0..20);
    # second Maple program
    a:= proc(n) a(n):= `if`(n<3, [1, 1, 9][n+1],
           ((41*n-24)*a(n-1) +(600-400*n)*a(n-2))/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    FullSimplify[Flatten[{1,Table[4^(2*n+1)*(1/2 (2*n-1))! Hypergeometric2F1[1,1/2+n,2+n,16/25]/(25*Sqrt[Pi]*(n+1)!),{n,1,20}]}]] (* Vaclav Kotesovec, Aug 13 2013 *)

Formula

G.f.: 4/5 + 8/(5*(3+5*sqrt(1-16*x))).
a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*4^j for n>0.
a(n) ~ 2^(4*n+2)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: n*a(n) = (41*n-24)*a(n-1) - 200*(2*n-3)*a(n-2). - Vaclav Kotesovec, Aug 13 2013