A194733 Number of k < n such that {k*r} > {n*r}, where { } = fractional part, r = (1+sqrt(5))/2 (the golden ratio).
0, 1, 0, 2, 4, 1, 4, 0, 4, 8, 2, 7, 12, 4, 10, 1, 8, 15, 4, 12, 0, 9, 18, 4, 14, 24, 8, 19, 2, 14, 26, 7, 20, 33, 12, 26, 4, 19, 34, 10, 26, 1, 18, 35, 8, 26, 44, 15, 34, 4, 24, 44, 12, 33, 0, 22, 44, 9, 32, 55, 18, 42, 4, 29, 54, 14, 40, 66, 24, 51, 8, 36, 64, 19, 48, 2, 32
Offset: 1
Keywords
Examples
r = 1.618, 2r = 3.236, 3r = 4.854, and 4r = 6.472, where r=(1+sqrt(5))/2. The fractional part of 4r is 0.472, which is less than the fractional parts of two of {r, 2r, 3r}, so a(4) = 2. - _Michael B. Porter_, Jan 29 2012
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a194733 n = length $ filter (nTau <) $ map (snd . properFraction . (* tau) . fromInteger) [1..n] where (_, nTau) = properFraction (tau * fromInteger n) tau = (1 + sqrt 5) / 2 -- Reinhard Zumkeller, Jan 28 2012
-
Maple
Digits := 100; A194733 := proc(n::posint) local a,k,phi,kfrac,nfrac ; phi := (1+sqrt(5))/2 ; a :=0 ; nfrac := n*phi-floor(n*phi) ; for k from 1 to n-1 do kfrac := k*phi-floor(k*phi) ; if evalf(kfrac-nfrac) > 0 then a := a+1 ; end if; end do: a ; end proc: seq(A194733(n),n=1..100) ; # R. J. Mathar, Aug 13 2021
-
Mathematica
r = GoldenRatio; p[x_] := FractionalPart[x]; u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0] v[n_, k_] := If[p[k*r] > p[n*r], 1, 0] s[n_] := Sum[u[n, k], {k, 1, n}] t[n_] := Sum[v[n, k], {k, 1, n}] Table[s[n], {n, 1, 100}] (* A019587 *) Table[t[n], {n, 1, 100}] (* A194733 *)
Formula
a(n)+A019587(n)=n.
Comments