A194797 Imbalance of the sum of parts of all partitions of n.
0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1
Keywords
Examples
For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below): ------------------------------------------------------ Partitions Tree Table 1.0 of 6. A194805 A135010 ------------------------------------------------------ 6 6 6 . . . . . 3+3 3 3 . . 3 . . 4+2 4 4 . . . 2 . 2+2+2 2 2 . 2 . 2 . 5+1 1 5 5 . . . . 1 3+2+1 1 3 3 . . 2 . 1 4+1+1 4 1 4 . . . 1 1 2+2+1+1 2 1 2 . 2 . 1 1 3+1+1+1 1 3 3 . . 1 1 1 2+1+1+1+1 2 1 2 . 1 1 1 1 1+1+1+1+1+1 1 1 1 1 1 1 1 ------------------------------------------------------ . . 6 3 4 2 1 3 5 . Table 2.0 . . . . 1 . . Table 2.1 . A182982 . . . 2 1 . . A182983 . . 3 . . 1 2 . . . . 2 2 1 . . . . . . . 1 ------------------------------------------------------ The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(combinat): a:= proc(n) option remember; n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1) end: a(0):=0: seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
-
Mathematica
a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)
Formula
a(n) = Sum_{k=1..n} (-1)^(k-1)*k*(p(k)-p(k-1)), where p(k) is the number of partitions of k.
a(n) = b(1)-b(2)+b(3)-b(4)+b(5)-b(6)...+-b(n), where b(n) = A138880(n).
a(n) ~ -(-1)^n * Pi * sqrt(2) * exp(Pi*sqrt(2*n/3)) / (48*sqrt(n)). - Vaclav Kotesovec, Oct 09 2018
Comments