cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194809 Imbalance of the sum of largest parts of all partitions of n.

Original entry on oeis.org

0, -2, 1, -5, 3, -12, 7, -25, 17, -47, 36, -88, 69, -155, 133, -262, 240, -439, 415, -717, 705, -1142, 1165, -1803, 1874, -2797, 2975, -4276, 4632, -6478, 7094, -9698, 10741, -14355, 16059, -21079, 23719, -30670, 34716, -44243, 50315, -63372
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2012

Keywords

Comments

Consider the three-dimensional structure of the shell model of partitions version "tree". Note that only the larges parts > 1 produce the imbalance. Note that every column where is located a largest part contains largest parts of the same size, thesame as a periodic table (see example). For more information see A135010.

Examples

			For n = 6 the illustration of the shell model with 6 shells shows an imbalance of largest parts (see below):
------------------------------------------------------
Partitions                Tree             Table 1.0
of 6.                    A194805            A135010
------------------------------------------------------
6                   6                     6 . . . . .
3+3                   3                   3 . . 3 . .
4+2                     4                 4 . . . 2 .
2+2+2                     2               2 . 2 . 2 .
5+1                         1   5         5 . . . . 1
3+2+1                       1 3           3 . . 2 . 1
4+1+1                   4   1             4 . . . 1 1
2+2+1+1                   2 1             2 . 2 . 1 1
3+1+1+1                     1 3           3 . . 1 1 1
2+1+1+1+1                 2 1             2 . 1 1 1 1
1+1+1+1+1+1                 1             1 1 1 1 1 1
------------------------------------------------------
The sum of largest parts > 1 on the left hand side is 23 and the sum of largest parts > 1 on the right hand side is 11, so a(6) = -23 + 11 = -12. On the other hand for n = 6 we have that 0 together with the first n-1 terms > 1 of A138137 are 0, 2, 3, 6, 8, 15 so a(6) = 0-2+3-6+8-15 = -12.
		

Crossrefs

Formula

a(n) = Sum_{k=2..n} (-1)^(k-1)*A138137(k), n >= 2.