A194812 Square array read by antidiagonals: T(n,k) = number of parts of size k in the last section of the set of partitions of n.
1, 1, 0, 2, 1, 0, 3, 0, 0, 0, 5, 2, 1, 0, 0, 7, 1, 0, 0, 0, 0, 11, 4, 1, 1, 0, 0, 0, 15, 3, 2, 0, 0, 0, 0, 0, 22, 8, 2, 1, 1, 0, 0, 0, 0, 30, 7, 3, 1, 0, 0, 0, 0, 0, 0, 42, 15, 6, 3, 1, 1, 0, 0, 0, 0, 0, 56, 15, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 77, 27, 10
Offset: 1
Examples
Array begins: . 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... . 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... . 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,... . 3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,... . 5, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,... . 7, 4, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0,... . 11, 3, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0,... . 15, 8, 3, 3, 1, 1, 0, 1, 0, 0, 0, 0,... . 22, 7, 6, 2, 2, 1, 1, 0, 1, 0, 0, 0,... . 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 0, 0,... . 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 0,... . 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1,... ... For n = 7, from the conjecture we have that p(n-1) = p(6) = 11 = 3+8 = 2+3+6 = 1+3+2+5 = 1+1+2+3+4 = 0+1+1+2+2+5, etc. where p(n) = A000041(n).
Crossrefs
Formula
It appears that A000041(n) = Sum_{j=1..k} T(n+j,k), n >= 0, k >= 1.
Comments